【題目】如圖,拋物線y=ax2+bx+1與x軸交于兩點(diǎn)A(﹣1,0),B(1,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)過點(diǎn)B作BD∥CA拋物線交于點(diǎn)D,求四邊形ACBD的面積;
(3)在x軸下方的拋物線上是否存在點(diǎn)M,過M作MN⊥x軸于點(diǎn)N,使以A、M、N為頂點(diǎn)的三角形與△BCD相似?若存在,則求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2+1;(2)4;(3)M (,﹣)或(4,﹣15)或(﹣2,﹣3).
【解析】
(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
(2)先求出直線AC的解析式,由于BD∥AC,那么直線BD的斜率與直線AC的相同,可據(jù)此求出直線BD的解析式,聯(lián)立拋物線的解析式即可求出D點(diǎn)的坐標(biāo);由圖知四邊形ACBD的面積是△ABC和△ABD的面積和,由此可求得其面積;
(3)易知OA=OB=OC=1,那么△ACB是等腰直角三角形,由于AC∥BD,則∠CBD=90°;根據(jù)B、C的坐標(biāo)可求出BC、BD的長,進(jìn)而可求出它們的比例關(guān)系;若以A、M、N為頂點(diǎn)的三角形與△BCD相似,那么兩個(gè)直角三角形的對應(yīng)直角邊應(yīng)該成立,可據(jù)此求出△AMN兩條直角邊的比例關(guān)系,連接拋物線的解析式即可求出M點(diǎn)的坐標(biāo).
解:(1)依題意,得:,解得;
∴拋物線的解析式為:y=﹣x2+1;
(2)易知A(﹣1,0),C(0,1),則直線AC的解析式為:y=x+1;
由于AC∥BD,可設(shè)直線BD的解析式為y=x+h,則有:1+h=0,h=﹣1;
∴直線BD的解析式為y=x﹣1;聯(lián)立拋物線的解析式得:
,解得,;
∴D(﹣2,﹣3);
∴S四邊形ACBD=S△ABC+S△ABD=×2×1+×2×3=4;
(3)∵OA=OB=OC=1,
∴△ABC是等腰Rt△;
∵AC∥BD,
∴∠CBD=90°;
易求得BC=,BD=3;
∴BC:BD=1:3;
由于∠CBD=∠MNA=90°,若以A、M、N為頂點(diǎn)的三角形與△BCD相似,則有:
△MNA∽△CBD或△MNA∽△DBC,得:
或;
即MN=AN或MN=3AN;
設(shè)M點(diǎn)的坐標(biāo)為(x,﹣x2+1),
①當(dāng)x>1時(shí),AN=x﹣(﹣1)=x+1,MN=x2﹣1;
∴x2﹣1=(x+1)或x2﹣1=3(x+1),
解得x=,x=﹣1(舍去)或x=4,x=﹣1(舍去);
∴M點(diǎn)的坐標(biāo)為:M(,﹣)或(4,﹣15);
②當(dāng)x<﹣1時(shí),AN=﹣1﹣x,MN=x2﹣1;
∴x2﹣1=(﹣x﹣1)或x2﹣1=3(﹣x﹣1),
解得x=,x=﹣1(兩個(gè)都不合題意,舍去)或x=﹣2,x=﹣1(舍去);
∴M(﹣2,﹣3);
故存在符合條件的M點(diǎn),且坐標(biāo)為:M(,﹣)或(4,﹣15)或(﹣2,﹣3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.
(1)若E是AB的中點(diǎn),求F點(diǎn)的坐標(biāo);
(2)若將△BEF沿直線EF對折,B點(diǎn)落在x軸上的D點(diǎn),作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為6 cm,AB=6 cm,則陰影部分的面積為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·孝感)學(xué)生甲與學(xué)生乙玩一種轉(zhuǎn)盤游戲.如圖是兩個(gè)完全相同的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成面積相等的四個(gè)區(qū)域,分別用數(shù)字“1”、“2”、“3”、“4”表示.固定指針,同時(shí)轉(zhuǎn)動兩個(gè)轉(zhuǎn)盤,任其自由停止,若兩指針?biāo)笖?shù)字的積為奇數(shù),則甲獲勝;若兩指針?biāo)笖?shù)字的積為偶數(shù),則乙獲勝;若指針指向扇形的分界線,則都重轉(zhuǎn)一次.在該游戲中乙獲勝的概率是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動;同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動,連接PQ,設(shè)運(yùn)動時(shí)間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過A、O、B三點(diǎn),連結(jié)OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連結(jié)ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動時(shí),求△BON面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn)A(-4,-2)和B(a,4),直線AB交y輸于點(diǎn)C,連接QA、OB.
(1)求反比例函數(shù)的解析式和點(diǎn)B的坐標(biāo):
(2)根據(jù)圖象回答,當(dāng)x的取值在什么范圍內(nèi)時(shí),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,﹣3),點(diǎn)B(﹣1,﹣3),點(diǎn)C(﹣1,﹣1)
(1)畫出△ABC;
(2)以點(diǎn)C為旋轉(zhuǎn)中心,畫出將△ABC順時(shí)針旋轉(zhuǎn)90度的△A1B1C,并求出線段CA掃過的面積;
(3)以O為位似中心,在第一象限內(nèi)作出△A2B2C2使△A2B2C2與△ABC位似,且位似比為2,并寫出A2點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長度的速度向點(diǎn)C作勻速運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長度的速度向點(diǎn)B作勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.連接PQ.
(1)填空:b= ,c= ;
(2)在點(diǎn)P,Q運(yùn)動過程中,△APQ可能是直角三角形嗎?請說明理由;
(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使△PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請求出運(yùn)動時(shí)間t;若不存在,請說明理由;
(4)如圖②,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對稱點(diǎn)Q′恰好落在線段BC上時(shí),請直接寫出點(diǎn)Q′的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com