如圖,AB是⊙O的直徑,BC是弦,∠ABC的平分線BD交⊙O于點(diǎn)D,DE⊥BC,交BC的延長線于點(diǎn)E,BD交AC于點(diǎn)F.⑴求證:DE是⊙O的切線;(2) 若CE=1,ED=2,求⊙O的半徑.
(1)連接OD,
∠EBD=∠ABD,∠ABD=∠ODB,則∠EBD=∠ODB…………1分
則OD∥BE,……………………………………………………2分
∠ODE=∠DEB=90°……………………………………………3分
DE是⊙O的切線………………………………………………4分
(2)設(shè)OD交AC于點(diǎn)M
易得矩形DMCE,DM="EC=1 "
AM=MC=DE=2…………………………………………………5分
設(shè)⊙O的半徑為x,得……………………6分
解得:……………………………………………………7分
⊙O的半徑為…………………………………………………8分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)如圖,PA為⊙O的切線,A為切點(diǎn).過A作OP的垂線AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B.延長BO與⊙O交于點(diǎn)D,與PA的延長線交于點(diǎn)E.
(1)求證:PB為⊙O的切線;
(2)若tan∠ABE=,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓柱的底面半徑為2cm,高為5cm,則圓柱的側(cè)面積是           (    )
A.20 cm2    8.20兀cm2    C.10兀cm2    D.5兀cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分5分)
已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC、AC于點(diǎn)D、E,聯(lián)結(jié)EB交OD于點(diǎn)F.

(1)求證:OD⊥BE;
(2)若DE=,AB=5,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:如圖23—1,的周長為,面積為S,內(nèi)切圓的半徑為,探究與S、之間的關(guān)系.連結(jié),,


,


解決問題

(1)利用探究的結(jié)論,計算邊長分別為5,12,13的三角形內(nèi)切圓半徑;
(2)若四邊形存在內(nèi)切圓(與各邊都相切的圓),如圖23—2且面積為,各邊長分別為,,,,試推導(dǎo)四邊形的內(nèi)切圓半徑公式;
(3)若一個邊形(為不小于3的整數(shù))存在內(nèi)切圓,且面積為,各邊長分別為,,,,合理猜想其內(nèi)切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將一個半徑為3,圓心角為60o的扇形AOB,如圖放置在直線l上(OA與直線l重合),然后將這個扇形在直線l上無摩擦滾動至O’A’B’的位置,在這個過程中,點(diǎn)O運(yùn)動到點(diǎn)O’的 路徑長度為
A.4πB.3π+ 3C.5πD.5π-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

勞技課上,王紅制成了一頂圓錐形紙帽,已知紙帽底面圓半徑為10cm,母線長50cm,則制成一頂這樣的紙帽所需紙面積至少為____ _cm2.(不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,P為CD中點(diǎn),若點(diǎn)P在以AC為直徑的圓周上,則∠A=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的半徑為2,OA=4,AB切⊙O于B,弦BC//OA,連結(jié)AC, 圖中陰影部分的面積為           

查看答案和解析>>

同步練習(xí)冊答案