【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對(duì)角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為

【答案】105°或45°
【解析】解:如圖,∵四邊形ABCD是菱形,
∴AB=AD=BC=CD,∠A=∠C=30°,
∠ABC=∠ADC=150°,
∴∠DBA=∠DBC=75°,
∵ED=EB,∠DEB=120°,
∴∠EBD=∠EDB=30°,
∴∠EBC=∠EBD+∠DBC=105°,
當(dāng)點(diǎn)E′在BD左側(cè)時(shí),∵∠DBE′=30°,
∴∠E′BC=∠DBC﹣∠DBE′=45°,
∴∠EBC=105°或45°,
所以答案是105°或45°.

【考點(diǎn)精析】通過靈活運(yùn)用菱形的性質(zhì),掌握菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長的積的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,已知AB=AC,BAC和∠ACB的平分線相交于點(diǎn)D,ADC=125°,求∠ACB和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣8,0),B(2,0),點(diǎn)C在直線y=﹣ 上,則使△ABC是直角三角形的點(diǎn)C的個(gè)數(shù)為(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:垂直于弦的直徑平分這條弦,并且平分這條弦所對(duì)的兩條;平分弧的直徑垂直平分這條弧所對(duì)的弦.你可以利用這一結(jié)論解決問題:
如圖,點(diǎn)P在以MN(南北方向)為直徑的⊙O上,MN=8,PQ⊥MN交⊙O于點(diǎn)Q,垂足為H,PQ≠M(fèi)N,弦PC、PD分別交MN于點(diǎn)E、F,且PE=PF.

(1)比較 的大;
(2)若OH=2 ,求證:OP∥CD;
(3)設(shè)直線MN、CD相交所成的銳角為α,試確定cosα= 時(shí),點(diǎn)P的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式變形中,正確的是(
A.x2?x3=x6
B. =|x|
C.(x2 )÷x=x﹣1
D.x2﹣x+1=(x﹣ 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐標(biāo)系中.
(1)若函數(shù)y1的圖象過點(diǎn)(﹣1,0),函數(shù)y2的圖象過點(diǎn)(1,2),求a,b的值.
(2)若函數(shù)y2的圖象經(jīng)過y1的頂點(diǎn).
①求證:2a+b=0;
②當(dāng)1<x< 時(shí),比較y1 , y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系內(nèi)的圖象大致為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A(﹣1,0)、C(0,3),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對(duì)稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE將△ABE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為F,連接EF并延長交AD于G,EG將ABCD分為面積相等的兩部分.則SABE=

查看答案和解析>>

同步練習(xí)冊(cè)答案