【題目】如圖,在平面直角坐標(biāo)系xOy中,過點(diǎn)A(﹣6,0)的直線l1與直線l2y2x相交于點(diǎn)Bm,6

1)求直線l1的表達(dá)式

2)直線l1y軸交于點(diǎn)M,求BOM的面積;

3)過動點(diǎn)Pm,0)且垂于x軸的直線與l1l2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D下方時(shí),寫出n的取值范圍.

【答案】(1)y=x+4;(2)6;(3)m>3.

【解析】

1)先求出B點(diǎn),再將將點(diǎn)AB代入ykx+b即可求解;

2)求出M點(diǎn)坐標(biāo),SBOM×4×3;

3)當(dāng)點(diǎn)C位于點(diǎn)D下方時(shí),即y1y2

解:(1)將點(diǎn)Bm,6)代入y2x,

m3

B3,6);

設(shè)直線l1的表達(dá)式為ykx+b

將點(diǎn)AB代入,得

,

,

;

2M04),

SBOM×4×36

3)當(dāng)點(diǎn)C位于點(diǎn)D下方時(shí),

y1y2,

m3;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對角線交于O點(diǎn),DEAC,CEBD

(1)求證:四邊形OCED是矩形;

(2)若AD=5,BD=8,計(jì)算sinDCE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府綠色出行的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點(diǎn)10千米.他用騎公共自行車的方式平均每小時(shí)行駛的路程比他用自駕車的方式平均每小時(shí)行駛的路程少45千米,他從家出發(fā)到上班地點(diǎn),騎公共自行車方式所用的時(shí)間是自駕車方式所用的時(shí)間的4倍.設(shè)小張用騎公共自行車方式上班平均每小時(shí)行駛x千米,根據(jù)題意,可列方程為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB5cmBD8cm,動點(diǎn)P從點(diǎn)B開始沿BC邊勻速運(yùn)動,動點(diǎn)Q從點(diǎn)D開始沿對角線DB勻速運(yùn)動,它們的運(yùn)動速度均為1cm/s,過點(diǎn)QQECD,與CD交于點(diǎn)E,連接PQ,點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),設(shè)運(yùn)動時(shí)間為ts),0t≤5

1)當(dāng)PQCD時(shí),求t的值;

2)設(shè)四邊形PQEC的面積為Scm2),求St之間的函數(shù)關(guān)系式;

3)當(dāng)P,Q兩點(diǎn)運(yùn)動到使∠PQE60°時(shí),求四邊形PQEC的面積;

4)是否存在某一時(shí)刻t,使PQ+QE的值最小?若存在,請求t的值,并求出此時(shí)PQ+QE的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA6,OB8,OC10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;點(diǎn)OO'的距離為8四邊形AOBO'的面積為24+15; AOB150°;sAOC+SAOB9+24,其中正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某品牌自行車的最新車型實(shí)物圖和簡化圖,它在輕量化設(shè)計(jì)、剎車、車籃和座位上都做了升級.A為后胎中心,經(jīng)測量車輪半徑AD30cm,中軸軸心C到地面的距離CF30cm,座位高度最低刻度為155cm,此時(shí)車架中立管BC長為54cm,且∠BCA71°.(參考數(shù)據(jù):sin71°≈0.95,cos71°≈0.33,tan71°≈2.88

1)求車座B到地面的高度(結(jié)果精確到1cm);

2)根據(jù)經(jīng)驗(yàn),當(dāng)車座B'到地面的距離B'E'90cm時(shí),身高175cm的人騎車比較舒適,此時(shí)車架中立管BC拉長的長度BB'應(yīng)是多少?(結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在一次社會實(shí)踐活動中,組織學(xué)生參觀了虎園、烈士陵園、博物館和植物園,為了解本次社會實(shí)踐活動的效果,學(xué)校隨機(jī)抽取了部分學(xué)生,對“最喜歡的景點(diǎn)”進(jìn)行了問卷調(diào)查,并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下不完整的統(tǒng)計(jì)圖.其中最喜歡烈士陵園的學(xué)生人數(shù)與最喜歡博物館的學(xué)生人數(shù)之比為2:1,請結(jié)合統(tǒng)計(jì)圖解答下列問題:

(1)本次活動抽查了   名學(xué)生;

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,最喜歡植物園的學(xué)生人數(shù)所對應(yīng)扇形的圓心角是   度;

(4)該校此次參加社會實(shí)踐活動的學(xué)生有720人,請求出最喜歡烈士陵園的人數(shù)約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)

如圖1,在有一個(gè)“凹角∠A1A2A3n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+A3+A4+A5+A6+……+An﹣(n4)×180°.

驗(yàn)證

1)如圖2,在有一個(gè)“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+C+D

2)證明3,在有一個(gè)“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+C+D+E+F360°.

延伸

3)如圖4,在有兩個(gè)連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+A2A3A4=∠A1+A4+A5+A6……+An﹣(n  )×180°.

查看答案和解析>>

同步練習(xí)冊答案