【題目】如圖,已知點(diǎn)M在直線外,點(diǎn)N在直線上,請(qǐng)用無刻度的直尺和圓規(guī)完成下列作圖,要求保留痕跡,不寫作法.

1)在圖①中,以線段MN為一條對(duì)角線作菱形MPNQ,使菱形的邊PN落在直線

2)在圖②中,做圓O,使圓O過點(diǎn)M,且與直線相切于N

【答案】1)作圖見解析;(2)作圖見解析

【解析】

1)作MN垂直平分線交直線于點(diǎn)P,取MN中點(diǎn)O為圓心,OP長(zhǎng)為半徑作弧,與垂直平分線交于另一點(diǎn)Q,則MPNQ為菱形;

2)過N點(diǎn)作的垂線與MN的垂直平分線交于O,以O為圓心,ON為半徑畫圓即可.

1)作MN垂直平分線交直線于點(diǎn)P,取MN中點(diǎn)O為圓心,OP長(zhǎng)為半徑作弧,與垂直平分線交于另一點(diǎn)Q,則四邊形MPNQ即為所求:

2)過N點(diǎn)作的垂線與MN的垂直平分線交于O,以O為圓心,ON為半徑畫圓.圓O即為所求:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:是經(jīng)過點(diǎn)A的一條直線,點(diǎn)C是直線左側(cè)的一個(gè)動(dòng)點(diǎn),且滿足,連接,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到線段,在直線上取一點(diǎn)B,使

1)若點(diǎn)C位置如圖1所示.

依據(jù)題意補(bǔ)全圖1

求證:

2)連接,寫出一個(gè)的值,使得對(duì)于任意一點(diǎn)C,總有,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)的左側(cè)).

1)求點(diǎn)的坐標(biāo)及拋物線的對(duì)稱軸;

2)已知點(diǎn),若拋物線與線段有公共點(diǎn),請(qǐng)結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×3的網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1,設(shè)經(jīng)過圖中格點(diǎn)AC,B三點(diǎn)的圓弧與BD交于E,則圖中陰影部分的面積為____.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為,對(duì)稱軸是直線

1)求該二次函數(shù)的表達(dá)式;

2)如圖,連接AC,若點(diǎn)P是該拋物線上一點(diǎn),且,求點(diǎn)P的坐標(biāo);

3)如圖,點(diǎn)P是該拋物線上一點(diǎn),點(diǎn)Q為射線CB上一點(diǎn),且P、Q兩點(diǎn)均在第四象限內(nèi),線段AQBP交于點(diǎn)M,當(dāng),且△ABM與△PQM的面積相等時(shí),請(qǐng)問線段PQ的長(zhǎng)是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為5,點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)By軸上,若反比例函數(shù)k0)的圖象過點(diǎn)C,則該反比例函數(shù)的表達(dá)式為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+1x軸和y軸分別交于B0B1兩點(diǎn),將B1B0B1逆時(shí)針旋轉(zhuǎn)135°B1B0,過點(diǎn)B0'y軸平行線,交直線yx+1于點(diǎn)B2,記B1B0B2的面積為S1;再將B2B1B2逆時(shí)針旋轉(zhuǎn)135°B2B1',過點(diǎn)B1'y軸平行線,交直線yx+l于點(diǎn)B3,記B2B1'B3的面積為S2…以此類推,則BnBn1'Bn+1的面積為Sn=(

A.nB.n1C.2nD.2n1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字,,的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中抽取一張,將該卡片上的數(shù)字記為;不放回,再?gòu)闹谐槿∫粡,將該卡片上的?shù)字記為,則使關(guān)于的不等式組的解集中有且只有個(gè)非負(fù)整數(shù)解的概率為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東東玩具商店用500元購(gòu)進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購(gòu)進(jìn)第二批這種悠悠球,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.

(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;

(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套悠悠球的售價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案