【題目】已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn).
(1)求、、三點(diǎn)坐標(biāo);
(2)求過(guò)、兩點(diǎn)的一次函數(shù)的解析式;
(3)如果是線段上的動(dòng)點(diǎn),試求的面積與之間的關(guān)系式.
【答案】(1)、、;(2)y=-x+6;(3)S=-2x+12(0<x<6)
【解析】
(1)拋物線的解析式中,令x=0可求得C點(diǎn)坐標(biāo),令y=0可求得A、B的坐標(biāo);
(2)已知了B、C的坐標(biāo),用待定系數(shù)法求解即可;
(3)根據(jù)直線BC的解析式可用x表示出P點(diǎn)的縱坐標(biāo),以OA為底,P點(diǎn)縱坐標(biāo)的絕對(duì)值為高即可得到的面積,由此可求得S與x的函數(shù)關(guān)系式;
解:(1)當(dāng)時(shí),,解得:,,
點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;
當(dāng)時(shí),,點(diǎn)的坐標(biāo)為.
(2)設(shè)過(guò),兩點(diǎn)的一次函數(shù)的解析式為,
將,代入,得:
,解得:,
過(guò),兩點(diǎn)的一次函數(shù)的解析式為.
(3)過(guò)點(diǎn)作軸,垂足為,如圖所示.
點(diǎn)的坐標(biāo)為,,
點(diǎn)的坐標(biāo)為,,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OF是∠MON的平分線,點(diǎn)A在射線OM上,P,Q是直線ON上的兩動(dòng)點(diǎn),點(diǎn)Q在點(diǎn)P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點(diǎn)B、點(diǎn)C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點(diǎn)都在射線ON上時(shí),請(qǐng)直接寫(xiě)出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點(diǎn)都在射線ON的反向延長(zhǎng)線上時(shí),線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出證明過(guò)程;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點(diǎn)都在射線ON上移動(dòng)時(shí),k是否存在最小值?若存在,請(qǐng)直接寫(xiě)出k的最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)AB=PB;(2)存在;(3)k=0.5.
【解析】試題分析:(1)結(jié)論:AB=PB.連接BQ,只要證明△AOB≌△PQB即可解決問(wèn)題;
(2)存在.證明方法類(lèi)似(1);
(3)連接BQ.只要證明△ABP∽△OBQ,即可推出=,由∠AOB=30°,推出當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,由此即可解決問(wèn)題;
試題解析:解:(1)連接:AB=PB.理由:如圖1中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∴∠AOB=∠BQO,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(2)存在,理由:如圖2中,連接BQ.
∵BC垂直平分OQ,∴BO=BQ,∴∠BOQ=∠BQO,∵OF平分∠MON,∠BOQ=∠FON,∴∠AOF=∠FON=∠BQC,∴∠BQP=∠AOB,∵OA=PQ,∴△AOB≌△PQB,∴AB=PB.
(3)連接BQ.
易證△ABO≌△PBQ,∴∠OAB=∠BPQ,AB=PB,∵∠OPB+∠BPQ=180°,∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,∵∠MON=60°,∴∠ABP=120°,∵BA=BP,∴∠BAP=∠BPA=30°,∵BO=BQ,∴∠BOQ=∠BQO=30°,∴△ABP∽△OBQ,∴ =,∵∠AOB=30°,∴當(dāng)BA⊥OM時(shí), 的值最小,最小值為0.5,∴k=0.5.
點(diǎn)睛:本題考查相似綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題,學(xué)會(huì)用轉(zhuǎn)化的思想思考問(wèn)題,屬于中考?碱}型.
【題型】解答題
【結(jié)束】
28
【題目】如圖,已知拋物線y=ax2+x+c與x軸交于A,B兩點(diǎn),與y軸交于丁C,且A(2,0),C(0,﹣4),直線l:y=﹣x﹣4與x軸交于點(diǎn)D,點(diǎn)P是拋物線y=ax2+x+c上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作PE⊥x軸,垂足為E,交直線l于點(diǎn)F.
(1)試求該拋物線表達(dá)式;
(2)如圖(1),若點(diǎn)P在第三象限,四邊形PCOF是平行四邊形,求P點(diǎn)的坐標(biāo);
(3)如圖(2),過(guò)點(diǎn)P作PH⊥y軸,垂足為H,連接AC.
①求證:△ACD是直角三角形;
②試問(wèn)當(dāng)P點(diǎn)橫坐標(biāo)為何值時(shí),使得以點(diǎn)P、C、H為頂點(diǎn)的三角形與△ACD相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙C經(jīng)過(guò)原點(diǎn)且與兩坐標(biāo)軸分別交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,4),M是圓上一點(diǎn),∠BMO=120°,則⊙C的半徑為____,圓心C的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=x2﹣6x+m滿(mǎn)足以下條件:當(dāng)﹣2<x<﹣1時(shí),它的圖象位于x軸的下方;當(dāng)8<x<9時(shí),它的圖象位于x軸的上方,則m的值為( 。
A.27B.9C.﹣7D.﹣16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1).
(1)以O點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫(huà)出圖形;
(2)B點(diǎn)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是 ;C點(diǎn)的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)是 ;
(3)在BC上有一點(diǎn)P(x,y),按(1)的方式得到的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點(diǎn) E,交⊙O于點(diǎn)D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,的頂點(diǎn)均在格點(diǎn)上,三個(gè)頂點(diǎn)的坐標(biāo)分別為.
(1)將關(guān)于軸作軸對(duì)稱(chēng)變換得,則點(diǎn)的坐標(biāo)為______.
(2)將繞原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得,則點(diǎn)的坐標(biāo)為______.
(3)在(1)(2)的基礎(chǔ)上,圖中的,是中心對(duì)稱(chēng)圖形,對(duì)稱(chēng)中心的坐標(biāo)為______.
(4)若以點(diǎn)、、、為頂點(diǎn)的四邊形為菱形,直接寫(xiě)出點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游樂(lè)場(chǎng)部分平面圖如圖所示,C,E,A在同一直線上,D,E,B在同一直線上,測(cè)得A處與E處的距離為80 m,C處與D處的距離為34 m,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m,設(shè)AD的長(zhǎng)為m,DC的長(zhǎng)為m。
(1)求與之間的函數(shù)關(guān)系式;
(2)根據(jù)實(shí)際情況,對(duì)于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請(qǐng)說(shuō)明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是整米數(shù),求出滿(mǎn)足條件的所有圍建方案。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com