如圖,已知⊙的半徑為9cm,射線經(jīng)過點(diǎn),OP=15 cm,射線與⊙相切于點(diǎn).動點(diǎn)自P點(diǎn)以cm/s的速度沿射線方向運(yùn)動,同時動點(diǎn)也自P點(diǎn)以2cm/s的速度沿射線方向運(yùn)動,則它們從點(diǎn)出發(fā)        s后所在直線與⊙相切.
0.5s或10.5s.

試題分析:PN與⊙O相切于點(diǎn)Q,OQ⊥PN,即∠OQP=90°,在直角△OPQ中根據(jù)勾股定理就可以求出PQ的值,過點(diǎn)O作OC⊥AB,垂足為C.直線AB與⊙O相切,則△PAB∽△POQ,根據(jù)相似三角形的對應(yīng)邊的比相等,就可以求出t的值.
試題解析:連接OQ,
∵PN與⊙O相切于點(diǎn)Q,
∴OQ⊥PN,即∠OQP=90°,
∵OP=15,OQ=9,
∴PQ=(cm).

過點(diǎn)O作OC⊥AB,垂足為C,

∵點(diǎn)A的運(yùn)動速度為cm/s,點(diǎn)B的運(yùn)動速度為2cm/s,運(yùn)動時間為ts,
∴PA=t,PB=2t,
∵PO=15,PQ=12,

∵∠P=∠P,
∴△PAB∽△POQ,
∴∠PBA=∠PQO=90°,
∵∠BQO=∠CBQ=∠OCB=90°,
∴四邊形OCBQ為矩形.
∴BQ=OC.
∵⊙O的半徑為,
∴BQ=OC=9時,直線AB與⊙O相切.
①當(dāng)AB運(yùn)動到如圖1所示的位置,
BQ=PQ-PB=12-2t,
∵BQ=9,
∴8-4t=9,
∴t=0.25(s).
②當(dāng)AB運(yùn)動到如圖2所示的位置,

BQ=PB-PQ=2t-12,
∵BQ=9,
∴2t-12=9,
∴t=10.5(s).
∴當(dāng)t為0.5s或10.5s時直線AB與⊙O相切.
考點(diǎn): 1.切線的判定;2.勾股定理;3.矩形的性質(zhì);4.相似三角形的判定與性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用一圓心角為120°,半徑為6cm的扇形做成一個圓錐的側(cè)面,則這個圓錐的底面半徑是_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,AD與⊙O相切于一點(diǎn)A,DE與⊙O相切于點(diǎn)E,點(diǎn)C為DE延長線上一點(diǎn),且CE=CB.

⑴求證:BC為⊙O的切線;
⑵若,AD=2,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)G在弧BD上,連接AG,交CD于點(diǎn)K,過點(diǎn)G的直線交CD延長線于點(diǎn)E,交AB延長線于點(diǎn)F,且EG=EK.

(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑OB和弦AC相交于點(diǎn)D,∠AOB=90°,則下列結(jié)論錯誤的是(   ).
A.∠C="45°" B.∠OAB=45°C.OB∶AB=1∶D.∠ABC=4∠CAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O1與⊙O2相外切,⊙O1的半徑為3,O1O2=5,則⊙O2的半徑為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙A和⊙B的半徑分別為2和3,AB=7,若將⊙A繞點(diǎn)C逆時針方向旋轉(zhuǎn)一周角,⊙A與⊙B相切的次數(shù)為
A.4B.3C.2   D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)C在以AB為直徑的半圓上,∠BAC=20°,則∠BOC等于(    )
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,的直徑,的切線,為切點(diǎn),連接于點(diǎn),連接,若∠,則下列結(jié)論正確的是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案