精英家教網(wǎng)已知△ABC是正三角形,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上.
(1)如圖,在正三角形ABC及其內部,以點A為位似中心,畫出正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不謝畫法,但要保留畫圖痕跡);
(2)若正三角形ABC的邊長為3+2
3
,則(1)中畫出的正方形E′F′P′N′的邊長為
 
分析:(1)利用位似圖形的性質,作出正方形EFPN的位似正方形E′F′P′N′,如答圖①所示;
(2)根據(jù)正三角形、正方形、直角三角形相關線段之間的關系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的邊長.
解答:解:(1)精英家教網(wǎng)如圖①,正方形E′F′P′N′即為所求.

(2)設正方形E′F′P′N′的邊長為x,
∵△ABC為正三角形,
∴AE′=BF′=
3
3
x.
∵E′F′+AE′+BF′=AB,
∴x+
3
3
x+
3
3
x=3+2
3
,
∴解得:x=3,
故答案為:3.
點評:本題考查了以位似變換、正三角形、正方形、直角三角形邊角性質等重要知識點,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相精英家教網(wǎng)互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)sad 60°的值為( B。
A.
1
2
;B.1;C.
3
2
;D.2
(2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
 

(3)已知sinα=
3
5
,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B.1                  C.                  D.2

(2)對于,∠A的正對值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為( ▼ )
A.B.1 C.D.2
(2)對于,∠A的正對值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時
sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為( ▼ )

A.B.1 C.D.2
(2)對于,∠A的正對值sad A的取值范圍是  ▼   .
(3)已知,其中為銳角,試求sad的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年北京市昌平區(qū)初三上學期期末考試數(shù)學卷 題型:解答題

教材中第25章銳角的三角比,在這章的小結中有如下一段話:銳角三角比定量地描述了在直角三角形中邊角之間的聯(lián)系.在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時

sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)sad 的值為(  ▼  )

 A.             B. 1                  C.                  D. 2

(2)對于,∠A的正對值sad A的取值范圍是   ▼   .

(3)已知,其中為銳角,試求sad的值.

 

查看答案和解析>>

同步練習冊答案