【題目】在凸多邊形中, 四邊形有2條對角線, 五邊形有5條對角線, 經(jīng)過觀察、探索、歸納, 你認為凸八邊形的對角線條數(shù)應(yīng)該是多少條? 簡單扼要地寫出你的思考過程.
【答案】解:四邊形有4個點,每個點可以畫“(4-3)”條對角線,則一共“4×(4-3)=4”條對角線,這樣每一條對角線算了兩次,所以一共有“ ”條對角線;
同理,五邊形有5個點,每個點可以畫“(5-3)”條對角線,則一共“5×(5-3)=10”條對角線,這樣每一條對角線算了兩次,所以一共有“ ”條對角線;
同理,八邊形有 條對角線.
【解析】將對角線的條數(shù)與凸多邊形的邊數(shù)進行關(guān)聯(lián),從邊數(shù)少的凸多邊形找出規(guī)律.
【考點精析】關(guān)于本題考查的多邊形的對角線,需要了解設(shè)多邊形的邊數(shù)為n,則多邊形的對角線條數(shù)為n(n-3)/2才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別是BC、CD邊上的點,且∠EAF=45°,對角線BD交AE于點M,交AF于點N.若AB=4,BM=2,則MN的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明過程:
已知:如圖,∠D=123°,∠EFD=57°,∠1=∠2
求證:∠3=∠B
證明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥()
又∵∠1=∠2(已知)
∴∥BC(內(nèi)錯角相等,兩直線平行)
∴EF∥()
∴∠3=∠B(兩直線平行,同位角相等)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結(jié)AE、DE、DC. ①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一件上衣,每件原價500元,第一次降價后,銷售甚慢,于是再次進行大幅降價,第二次降價的百分率是第一次降價的百分率的2倍,結(jié)果這批上衣以每件240元的價格迅速售出,求兩次降價的百分率各是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com