【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點中心對稱,已知A, D1,D三點的坐標分別是(0,4),(0,3),(0,2).
(1)對稱中心的坐標;
(2)寫出頂點B, C, B1 , C1的坐標.
【答案】(0, );B(-2,4)C(-2,2)(2,1)(2,3).
【解析】試題分析:(1)根據(jù)對稱中心的性質(zhì),可得對稱中心的坐標是D1D的中點,據(jù)此解答即可.
(2)首先根據(jù)A,D的坐標分別是(0,4),(0,2),求出正方形ABCD與正方形A1B1C1D1的邊長是多少,然后根據(jù)A,D1,D三點的坐標分別是(0,4),(0,3),(0,2),判斷出頂點B,C,B1,C1的坐標各是多少即可.
試題解析:(1)根據(jù)對稱中心的性質(zhì),可得
對稱中心的坐標是D1D的中點,
∵D1,D的坐標分別是(0,3),(0,2),
∴對稱中心的坐標是(0,2.5).
(2)∵A,D的坐標分別是(0,4),(0,2),
∴正方形ABCD與正方形A1B1C1D1的邊長都是:4﹣2=2,
∴B,C的坐標分別是(﹣2,4),(﹣2,2),
∵A1D1=2,D1的坐標是(0,3),
∴A1的坐標是(0,1),
∴B1,C1的坐標分別是(2,1),(2,3),
綜上,可得頂點B,C,B1,C1的坐標分別是(﹣2,4),(﹣2,2),(2,1),(2,3).
科目:初中數(shù)學 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,四邊形OABC是菱形,點C在x軸上,AB交y軸于點H,AC交y軸于點M.已知點A(-3,4).
(1)求AO的長;
(2)求直線AC的解析式和點M的坐標;
(3)如圖2,點P從點A出發(fā),以每秒2個單位的速度沿折線A-B-C運動,到達點C終止.設(shè)點P的運動時間為t秒,△PMB的面積為S.
①求S與t的函數(shù)關(guān)系式;
②求S的最大值.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F(xiàn)在函數(shù)y= 的圖象上,直線EF分別與x軸、y軸交于點A、B,且BE:BF=1:3,則△EOF的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB∥CD,EF交AB于E,交CD于F,∠AEF=68°,FG平分∠EFD,KF⊥FG,求∠KFC的度數(shù).
解:∵AB∥CD(已知)
∴∠EFD=∠AEF( )
∵∠AEF=68°(已知)
∴∠EFD=∠AEF=68°( )
∵FG平分∠EFD(已知)
所以∠EFG=∠GFD=∠EFD=34°( )
又因為KF⊥FG( )
所以∠KFG=90°( )
所以∠KFC=180°-∠GFD-∠KFG= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC的垂直平分線分別交AD,BC于點E,F(xiàn),連接CE,若△CED的周長為6,則ABCD的周長為( )
A.6
B.12
C.18
D.24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】抖音將“重慶洪崖洞”抖成了全國知名景點,五一期間,很多外地游客都慕名前來打卡.小麗和小萌二人約定分別從貴陽和遵義自駕到重慶游玩,由于貴陽到重慶的路程更遠,所以小麗先出發(fā),2.2小時后小萌才出發(fā)追趕小麗,她們二人離貴陽的距離(千米)與小麗行駛的時間(小時)之間的關(guān)系圖像如圖所示,請根據(jù)圖像回答下列問題:
(1)小麗的速度為 千米/小時,小萌的速度為 千米/小時;
(2)當小萌追上小麗時,她們離貴陽的距離是多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有、兩地,甲騎自行車從地到地;乙騎自行車從地到地,到達地后立即按原路返回,如圖是甲乙兩人離地的距離與行駛時間之間的函數(shù)圖像,根據(jù)圖像解答以下問題:
(1)求出甲離地的距離與行駛時間之間的函數(shù)表達式;
(2)求出點的坐標,并解釋改點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持練習時的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com