.如圖,是二次函數(shù)y1=ax2+bx+c和一次函數(shù)y2=mx+n的圖象,觀察圖象寫出y2>y1時,x的取值范圍__________.
-2≤x≤1.

試題分析:關(guān)鍵是從圖象上找出兩函數(shù)圖象交點坐標(biāo),再根據(jù)兩函數(shù)圖象的上下位置關(guān)系,判斷y2≥y1時,x的取值范圍.
從圖象上看出,兩個交點坐標(biāo)分別為(-2,0),(1,3),
∴當(dāng)有y2≥y1時,有-2≤x≤1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,如果將拋物線先向左平移1個單位,再向上平移2個單位,那么所得的新拋物線的解析式是(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1)求證:不論a為何實數(shù),此函數(shù)圖象與x軸總有兩個交點.
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式.
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標(biāo),若不存在請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點.

(1)求拋物線的解析式及點D坐標(biāo);
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標(biāo);
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標(biāo);
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(biāo)(點P、O、D分別與點N、O、B對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對稱軸和C點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,把拋物線向上平移3個單位,再向左平移1個單位,則所得拋物線的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的對稱軸是(   )
A.直線x=-1B.直線x="1" C.直線x=2D.直線x=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù),當(dāng)時,自變量的取值范圍是        ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將拋物線向下平移3個單位,再向左平移4個單位得到拋物線,則原拋物線的頂點坐標(biāo)是          

查看答案和解析>>

同步練習(xí)冊答案