二次函數(shù)y=(2x-1)+2的頂點的坐標是(  )
A.(1,2)B.(1,-2)C.(,2)D.(-,-2)
C

試題分析:二次函數(shù)y=(2x-1)+2即的頂點坐標為(,2)
點評:本題考查二次函數(shù)的頂點坐標,考生要掌握二次函數(shù)的頂點式與其頂點坐標的關系
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),在平面直角坐標系中,矩形ABCO,B點坐標為(4,3),拋物線yx2bxc經過矩形ABCO的頂點B、C,DBC的中點,直線ADy軸交于E點,與拋物線yx2bxc交于第四象限的F點.

(1)求該拋物線解析式與F點坐標;
(2)如圖,動點P從點C出發(fā),沿線段CB以每秒1個單位長度的速度向終點B運動;
同時,動點M從點A出發(fā),沿線段AE以每秒個單位長度的速度向終點E運動.過
PPHOA,垂足為H,連接MP,MH.設點P的運動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線軸交于兩點,與軸交于點.

(1)請求出拋物線頂點的坐標(用含的代數(shù)式表示),兩點的坐標;
(2)經探究可知,的面積比不變,試求出這個比值;
(3)是否存在使為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

平移拋物線,使它經過原點,寫出平移后拋物線的一個解析式_______

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列二次函數(shù)中,頂點坐標是(2,-3)的函數(shù)解析式為(   )
A.y=(x-2)2+3 B.y=(x+2)2+3C.y=(x-2)2-3D.y=(x+2)2-3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

,拋物線x軸于點Q、M,交y軸于點P,點P關于x軸的對稱點為N。

(1)求點M、N的坐標,并判斷四邊形NMPQ的形狀;
(2)如圖,坐標系中有一正方形ABCD,其中AB=2cm且CD⊥x軸,CD的中點E與Q點重合,正方形ABCD以1cm/s的速度沿射線QM運動,當正方形ABCD完全進入四邊形QPMN時立即停止運動.
①當正方形ABCD與四邊形NMPQ的交點個數(shù)為2時,求兩四邊形重疊部分的面積y與運動時間t之間的函數(shù)關系式,并寫出自變量t的取值范圍;
②求運動幾秒時,重疊部分的面積為正方形ABCD面積
的一半.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關于軸對稱,點軸左側.于點于點,四邊形與四邊形的面積分別為6和10,則的面積之和為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

閱讀下列材料:
我們知道,一次函數(shù)ykxb的圖象是一條直線,而ykxb經過恒等變形可化為直線的另一種表達形式:AxBxC=0(A、B、C是常數(shù),且A、B不同時為0).如圖1,點Pm,n)到直線lAxBxC=0的距離(d)計算公式是:d 

例:求點P(1,2)到直線y x的距離d時,先將y x化為5x-12y-2=0,再由上述距離公式求得d  
解答下列問題:
如圖2,已知直線y=-x-4與x軸交于點A,與y軸交于點B,拋物線yx2-4x+5上的一點M(3,2).

(1)求點M到直線AB的距離.
(2)拋物線上是否存在點P,使得△PAB的面積最?若存在,求出點P的坐標及△PAB面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某公司推出一種高效環(huán)保型洗滌用品,年初上市后公司經歷了從虧損到盈利的過程,下面的二次函數(shù)圖象(部分)反映了該公司年初以來累積利潤S(萬元)與銷售時間(月)之間的關系(即前個月的利潤總和S與的關系).根據(jù)圖象提供的信息,解答下列問題.

(1)如圖,已知圖象上的三點坐標,求累積利潤S(萬元)與時間(月)之間的函數(shù)關系式;
(2)求截止到幾月未公司累積利潤可達到30萬元?
(3)求第8月公司所獲利潤是多少元?

查看答案和解析>>

同步練習冊答案