【題目】若x=﹣1是關(guān)于x的一元二次方程x2﹣x+c=0的一個(gè)根,則c的值是(  )
A.2
B.1
C.0
D.-2

【答案】D
【解析】解:∵x=﹣1是關(guān)于x的一元二次方程x2﹣x+c=0的一個(gè)根,
∴(﹣1)2+1+c=0,∴c=﹣2,
故選:D.
將x=﹣1代入一元二次方程x2﹣x+c=0,即可求得c的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間上映的第一部中國科幻電影《流浪地球》,斬獲約4 670 000 000元票房,將4 670 000 000用科學(xué)記數(shù)法表示是( 。

A. 4.67×1010B. 0.467×1010C. 0.467×109D. 4.67×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q

(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);

(2)求直線BD的解析式;

(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;

(4)在點(diǎn)P的運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a3ab2分解因式的結(jié)果為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC

(1)求證:BE是⊙O的切線;

(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中錯(cuò)誤的是( 。
A.平行四邊形的對邊相等
B.兩組對邊分別相等的四邊形是平行四邊形
C.矩形的對角線相等
D.對角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,若A點(diǎn)表示數(shù)﹣1,點(diǎn)B表示數(shù)2,A、B兩點(diǎn)之間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省涼山州)閱讀下列材料并回答問題:

材料1:如果一個(gè)三角形的三邊長分別為a,b,c,記,那么三角形的面積為

古希臘幾何學(xué)家海倫(Heron,約公元50年),在數(shù)學(xué)史上以解決幾何測量問題而聞名.他在《度量》一書中,給出了公式①和它的證明,這一公式稱海倫公式

我國南宋數(shù)學(xué)家秦九韶(約1202﹣﹣約1261),曾提出利用三角形的三邊求面積的秦九韶公式:

下面我們對公式②進(jìn)行變形:

這說明海倫公式與秦九韶公式實(shí)質(zhì)上是同一公式,所以我們也稱①為海倫﹣﹣秦九韶公式

問題:如圖,在△ABC中,AB=13,BC=12,AC=7,⊙O內(nèi)切于△ABC,切點(diǎn)分別是D、E、F

(1)求△ABC的面積;

(2)求⊙O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=7,ab=10,則代數(shù)式(5ab+4a+7b)+(3a–4ab)的值為()

A. 49 B. 59

C. 77 D. 139

查看答案和解析>>

同步練習(xí)冊答案