【題目】如圖,AB是⊙O的直徑,點(diǎn)C是弧BD的中點(diǎn),CE⊥AB于點(diǎn)F.
(1)求證:BF=CF;
(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長(zhǎng).
【答案】(1)見解析;(2)2.4cm.
【解析】
(1)由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,即可得∠ACB=90°,又由CE⊥AB,根據(jù)同角的余角相等,可證得∠2=∠A,又由點(diǎn)C是的中點(diǎn)證得∠1=∠A,繼而可證得CF=BF.
(2)根據(jù)勾股定理即可求得直徑AB的長(zhǎng),進(jìn)而求得⊙O的半徑,然后證得△CBE∽△ABC,根據(jù)相似三角形的性質(zhì)即可求得CE.
(1)連接BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
又∵CE⊥AB,
∴∠CEB=90°,
∴∠2=90°﹣∠3=∠A,
又∵C是弧BD的中點(diǎn),
∴∠1=∠A,
∴∠1=∠2,
∴CF=BF;
(2)∵CD=3cm,
∴BC=CD=3cm,
∵AC=4cm,
∴在R△ABC中,AB2=AC2+BC2,
即AB2=32+42,
∴AB=5,
∴⊙O的半徑為2.5cm,
∵∠2=∠A,∠EBC=∠ABC,
∴△CBE∽△ABC,
∴,即,
∴CE=2.4cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階,下圖是其中的甲、乙兩段臺(tái)階的示意圖(圖中的數(shù)字表示每一級(jí)臺(tái)階的高度,單位cm).已知數(shù)據(jù)15、16、16、14、14、15的方差S甲2=,數(shù)據(jù)11、15、18、17、10、19的方差S乙2=.
請(qǐng)你用學(xué)過的統(tǒng)計(jì)知識(shí)(平均數(shù)、中位數(shù)、方差和極差)通過計(jì)算,回答下列問題:
(1)兩段臺(tái)階路有哪些相同點(diǎn)和不同點(diǎn)?
(2)哪段臺(tái)階路走起來更舒服?為什么?
(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,對(duì)角線AC、BD交于O,Q為CD上任意一點(diǎn),AQ交BD于M,過M作MN⊥AM交BC于N,連AN、QN.下列結(jié)論:①M(fèi)A=MN;②∠AQD=∠AQN; ③S△AQN=S五邊形ABNQD;④QN是以A為圓心,以AB為半徑的圓的切線.其中正確的結(jié)論有( )
A. ①②③④ B. 只有①③④ C. 只有②③④ D. 只有①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AB邊上任意一點(diǎn),∠ECF=45°,CF交AD于點(diǎn)F,將△CBE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△CDP,點(diǎn)P恰好在AD的延長(zhǎng)線上.
(1)求證:EF=PF;
(2)直線EF與以C為圓心,CD為半徑的圓相切嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計(jì)算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計(jì)算.八(9)班有11位同學(xué)參加項(xiàng)目化學(xué)習(xí)知識(shí)競(jìng)賽,若每份答卷重12克,每個(gè)信封重4克,將這11份答卷分裝在兩個(gè)信封中寄出,所貼郵票的總金額最少是_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△CDE都是等邊三角形,且點(diǎn)A、C、E在一條直線上,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,CD與BE交于點(diǎn)Q,連接PQ
(1)求證:AD=BE;
(2)∠AOB的度數(shù)為 ;PQ與AE的位置關(guān)系是 ;
(3)如圖2,△ABC固定,將△CDE繞點(diǎn)C按順時(shí)針(或逆時(shí)針)方向旋轉(zhuǎn)任意角度α,在旋轉(zhuǎn)過程中,(1)中的結(jié)論是否總成立?∠AOB的度數(shù)是否改變?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在邊BC上,OE⊥AB,OF⊥AC,垂足分別為E,F.求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫出圖表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com