已知二次函數(shù)y=ax2+bx+c,則下列結(jié)論中:
①若拋物線開口向上時(shí),則a>0.②若對稱軸與x軸交于正半軸時(shí),則ab>0;
③若拋物線與x軸交于A,B與y軸交于C,△ABC是直角三角形,則ac=-1;
④若拋物線與x軸的兩個(gè)交點(diǎn)及頂點(diǎn)構(gòu)成等腰直角三角形時(shí),則.
正確有
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 華東師大(新課標(biāo)2001/3年初審) 華東師大版 題型:013
已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則函數(shù)y=ax+b的圖象只可能是選項(xiàng)中的
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2009年貴州黔東南州中考數(shù)學(xué)試卷 題型:044
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)的距離為時(shí),求出此二次函數(shù)的解析式.
(3)若此二次函數(shù)圖象與x軸交于A、B兩點(diǎn),在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)A、B的距離為時(shí),求出此二次函數(shù)的解析式.
(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=x2+ax+a-2.
(1)求證:不論a為何實(shí)數(shù),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn).
(2)設(shè)a<0,當(dāng)此函數(shù)圖象與x軸的兩個(gè)交點(diǎn)A、B的距離為時(shí),求出此二次函數(shù)的解析式.
(3)若(2)中的條件不變,在函數(shù)圖象上是否存在點(diǎn)P,使得△PAB的面積為,若存在求出P點(diǎn)坐標(biāo),若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年北京四中初三第一學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知二次函數(shù)y=ax 2+bx+c圖象的一部分如圖,則a的取值范圍是____ __.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com