【題目】如圖,在中,∠BAC=90°,AB=AC=2,點分別在上(點不與點重合),且45°,若是等腰三角形,則______

【答案】

【解析】

由題意可知DB、C不重合,所以分兩種情況討論:①當(dāng)AD=BD,此時可得出∠B=BAD=45°,從而得出△ADB為等腰直角三角形,從而△ACD也為等腰直角三角形,進(jìn)而求而DE的長;②當(dāng)AB=BD,可得BD,CD的長,再根據(jù)等角對等邊得出CE=CD,進(jìn)而可得AE的長.

解:∵AB=AC,∠BAC=90°,∴∠B=C=45°.

由題意點D不與點B,C重合,分以下兩種情況:

①當(dāng)AD=BD時(如圖1),

∴∠B=BAD=45°,∴∠ADB =90°=ADC,

AB=AC,∴AD平分∠BAC,∴DBC的中點,

AD=CD,

又∠ADE=45°,

∴∠ADE=CDE=45°,即DE平分∠ADC

EAC邊的中點,
CE=AE=1
②當(dāng)AB=BD時(如圖2),

∵∠B=45°,∴∠BAD=BDA=67.5°.
∵∠ADE=45°,∴∠CDE=180°-BDA-ADE=67.5°,

∴∠CED=180°-C-CDE=67.5°,

CD=CE

AB=AC=2,∠BAC=90°,∴BC=2

CD=BC-BD=BC-AB=2-2,

CE=2-2,

AE=AC-CE=2-(2-2)=4-2

綜上所述,CE的長為14-2
故答案為:14-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙、丁4名同學(xué)中隨機(jī)抽取同學(xué)參加學(xué)校的座談會

(1)抽取一名同學(xué), 恰好是甲的概率為

(2) 抽取兩名同學(xué),求甲在其中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣20),B40)兩點,與y軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標(biāo)為m1m4)連接BCDB,DC

1)求拋物線的函數(shù)解析式;

2)△BCD的面積是否存在最大值,若存在,求此時點D的坐標(biāo);若不存在,說明理由;

3)在(2)的條件下,若點Mx軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,點PCD上一動點,連結(jié)PA,分別過點B、DBEPA、DFPA,垂足為E、F,如圖①.

1)請?zhí)剿?/span>BE、DF、EF這三條線段長度具有怎樣的數(shù)量關(guān)系,若點PDC的延長線上(如圖②),那么這三條線段的長度之間又有怎樣的數(shù)量關(guān)系?若點PCD的延長線上呢(如圖③)?請分別直接寫出結(jié)論.

2)請在(1)中的三個結(jié)論中選擇一個加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】重慶某中學(xué)組織七、八、九年級學(xué)生參加“直轄20年,點贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級統(tǒng)計,繪制了如圖1和如圖2兩幅不完整的統(tǒng)計圖,根據(jù)圖中提供的信息完成以下問題.

(1)扇形統(tǒng)計圖中九年級參賽作文篇數(shù)對應(yīng)的圓心角是 度,并補(bǔ)全條形統(tǒng)計圖;

(2)經(jīng)過評審,全校有4篇作文榮獲特等獎,其中有一篇來自七年級,學(xué)校準(zhǔn)備從特等獎作文中任選兩篇刊登在?,請利用畫樹狀圖或列表的方法求出七年級特等獎作文被選登在?系母怕剩

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市以20/千克的進(jìn)貨價購進(jìn)了一批綠色食品,如果以30/千克銷售這些綠色食品,那么每天可售出400千克.由銷售經(jīng)驗可知,每天的銷售量y(千克)與銷售單價x(元)(x30)存在如圖所示的一次函數(shù)關(guān)系.

1)試求出yx的函數(shù)關(guān)系式;

2)設(shè)該超市銷售該綠色食品每天獲得利潤w元,當(dāng)銷售單價為何值時,每天可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我省部分地區(qū)遭遇嚴(yán)重干旱,為鼓勵市民節(jié)約用水,我市自來水公司按分段收費標(biāo)準(zhǔn)收費,右圖反映的是每月收水費y()與用水量x()之間的函數(shù)關(guān)系.

1)小聰家五月份用水7噸,應(yīng)交水費 元;

2)按上述分段收費標(biāo)準(zhǔn),小聰家三、四月份分別交水費29元和19.8元,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面內(nèi)容,并解答問題:楊輝和他的一個數(shù)學(xué)問題:提起代數(shù),人們自然就和方程聯(lián)系起米.事實上,我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除算法》):直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.請你用學(xué)過的知識解決這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca0)的大致圖象如圖所示,頂點坐標(biāo)為(﹣2,﹣9a),下列結(jié)論:abc0;②4a+2b+c0③5ab+c0;若方程ax+5)(x1)=﹣1有兩個根x1x2,且x1x2,則﹣5x1x21若方程|ax2+bx+c|1有四個根,則這四個根的和為﹣8,其中正確的結(jié)論有( 。

A.①②③④B.①②③⑤C.②③④⑤D.①②④⑤

查看答案和解析>>

同步練習(xí)冊答案