如圖,兩同心圓的圓心為,大圓的弦切小圓于,兩圓的半徑分別為,則弦長=     ;若用陰影部分圍成一個(gè)圓錐,則該圓錐的底面半徑為     .(結(jié)果保留根號(hào))
.
利用垂徑定理根據(jù)勾股定理即可求得弦AB的長;利用相應(yīng)的三角函數(shù)可求得∠AOB的度數(shù),進(jìn)而可求優(yōu)弧AB的長度,除以2π即為圓錐的底面半徑.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與x軸、y軸分別相交于點(diǎn)A、B,與正比例函數(shù)的圖象相交于點(diǎn)C、D(點(diǎn)C在點(diǎn)D的左側(cè)),⊙O是以CD長為半徑的圓。CE∥x軸,DE∥y軸,CE、DE相交于點(diǎn)E。
(1)△CDE是    ▲   三角形;點(diǎn)C的坐標(biāo)為    ▲   ,點(diǎn)D的坐標(biāo)為    ▲   (用含有b的代數(shù)式表示);
(2)b為何值時(shí),點(diǎn)E在⊙O上?
(3)隨著b取值逐漸增大,直線與⊙O有哪些位置關(guān)系?求出相應(yīng)b的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,紙片⊙O的半徑為2,如圖1,沿弦AB折疊操作.
(1)①折疊后的所在圓的圓心為O′時(shí),求O′A的長度;
②如圖2,當(dāng)折疊后的經(jīng)過圓心為O時(shí),求的長度;
③如圖3,當(dāng)弦AB=2時(shí),求圓心O到弦AB的距離;
(2)在圖1中,再將紙片⊙O沿弦CD折疊操作.
①如圖4,當(dāng)AB∥CD,折疊后的所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)O到弦AB.CD的距離之和為d,求d的值;
②如圖5,當(dāng)AB與CD不平行,折疊后的所在圓外切于點(diǎn)P時(shí),設(shè)點(diǎn)M為AB的中點(diǎn),點(diǎn)N為CD的中點(diǎn),試探究四邊形OMPN的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=  度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC內(nèi)接于⊙O,若∠OAB=25°,則∠C的度數(shù)為
A.25°B.50°C.65°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知的直徑上的一點(diǎn),,則=    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直角三角形的兩直角邊分別為5,12,則它的外接圓半徑R=             。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過點(diǎn)D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知矩形ABCD中,AB=10,AD=4,點(diǎn)E為CD邊上的一個(gè)動(dòng)點(diǎn),連結(jié)AE、BE,以AE為直徑作圓,交AB于點(diǎn)F,過點(diǎn)F作FH⊥BE于H,直線FH交⊙O于點(diǎn)G.
(1)求證:⊙O必經(jīng)過點(diǎn)D;
(2)若點(diǎn)E運(yùn)動(dòng)到CD的中點(diǎn),試證明:此時(shí)FH為⊙O的切線;
(3)當(dāng)點(diǎn)E運(yùn)動(dòng)到某處時(shí),AE∥FH,求此時(shí)GF的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案