【題目】計算

(1)()×(﹣36)

(2)﹣32+(﹣2×(﹣)+|﹣22|+(﹣1)2013;

(3)36×(﹣99);

(4)﹣13×﹣0.34×+×(﹣13)﹣×0.34(用簡便方法計算)

【答案】(1)-7(2)-7(3)-3598(4)-13.34

【解析】

(1)根據(jù)乘法分配律可以解答本題

(2)原式先計算乘方運算,再計算乘法運算,最后算加法運算即可得到結(jié)果;

(3)原式變形后,利用乘法分配律計算即可得到結(jié)果

(4)原式逆用乘法分配律計算即可得到結(jié)果.

(1)()×(﹣36)=(﹣18)+20+(﹣30)+21=﹣7;

(2)﹣32+(﹣2×(﹣)+|﹣22|+(﹣1)2013

=﹣9++4+(﹣1)

=﹣9+(﹣1)+4+(﹣1)

=﹣7;

(3)36×(﹣99

=36×(﹣100+

=﹣3600+2

=﹣3598;

(4)﹣13×﹣0.34×+×(﹣13)﹣×0.34

=13×(﹣)﹣0.34×(

=13×(﹣1)﹣0.34×1

=﹣13﹣0.34

=﹣13.34.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在甲批發(fā)市場以每包m元的價格進了40包茶葉,又在乙批發(fā)市場以每包n元(m>n)的價格進了同樣的60包茶葉,如果商家以每包元的價格賣出這種茶葉,賣完后,這家商店( )

A.盈利了 B.虧損了 C.不贏不虧 D.盈虧不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩定點AB對應(yīng)的數(shù)分別為-1814,現(xiàn)在有甲、乙兩只電子螞蟻分別從A、B同時出發(fā),沿著數(shù)軸爬行,速度分別為每秒1.5個單位和1.7個單位,它們第一次相向爬行1秒,第二次反向爬行2秒,第三次相向爬行3秒,第四次反向爬行4秒,第五次相向爬行5秒,……,按如此規(guī)律,則它們第一次相遇所需的時間為(

A. 55 B. 190 C. 200 D. 210

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個四邊形有一組對角互補(即對角之和為180°),則稱這個四邊形為圓滿四邊形.
(1)概念理解:在平行四邊形、菱形、矩形、正方形中,你認為屬于圓滿四邊形的有
(2)問題探究:如圖,在四邊形ABCD中,對角線AC、BD相交于點O,若∠ADB=∠ACB,問四邊形ABCD是圓滿四邊形嗎?請說明理由.小明經(jīng)過思考后,判斷四邊形ABCD是圓滿四邊形,并提出了如下探究思路:先證明△AOD∽△BOC,得到比例式 = ,再證明△AOB∽△DOC,得出對應(yīng)角相等,根據(jù)四邊形內(nèi)角和定理,得出一組對角互補.請你幫助小明寫出解題過程.

(3)問題解決:請結(jié)合上述解題中所積累的經(jīng)驗和知識完成下題.如圖,四邊形ABCD中,AD⊥BD,AC⊥BC,AB與DC的延長線相交于點E,BE=BD,AB=5,AD=3,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“<”“>”或“=”號填空:

(1)﹣_____;

(2)﹣(﹣0.01)_____ (﹣2;

(3)3.9950(精確到0.01)_____3.999.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后某企業(yè)推出一種“CNG”改燒汽油為天然氣的裝置,每輛車改裝費為b,據(jù)市場調(diào)查知每輛車改裝前、后的燃料費含改裝費y0,y1與正常運營時間x之間分別滿足關(guān)系式y0=ax,y1=b+50x,圖象如圖所示

1每輛車改裝前每天的燃料費a= ,每輛車的改裝費b= ,正常運營時間 天后就可以從節(jié)省的燃料費中收回改裝成本;

2某出租汽車公司一次性改裝了100輛出租車因而正常運行多少天后共節(jié)省燃料費40萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點A(-3,0),B軸上,直線y=-2x+a經(jīng)過點B軸交于點(0, 6),直線AD與直線y=-2x+a相交于點D(-1,n).

(1)求直線AD的表達式;

(2)M是直線y=-2x+a上的一點(不與點B重合),且點M的橫坐標為m,求△ABM的面積Sm之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=nAD,點E,F(xiàn)分別在邊AB,AD上且不與頂點A,B,D重合,∠AEF=∠BCE,圈O過A,E,F(xiàn)三點.
(1)求證:圈O與CE相切與點E;
(2)如圖1,若AF=2FD且∠AEF=30°,求n的值;
(3)如圖2.若EF=EC且圈O與邊CD相切,求n的值.

查看答案和解析>>

同步練習(xí)冊答案