如圖①,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=-x-與⊙M相切于點H,交x軸于點E,交y軸于點F.

1.請直接寫出OE、⊙M的半徑r、CH的長;

2.如圖②,弦HQ交x軸于點P,且DP:PH=3:2,求cos∠QHC的值;

3.如圖③,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.

     

 

【答案】

 

1.OE=5,r=2,CH=2

2.如圖1,連接QC、QD,則∠CQD =90°,∠QHC =∠QDC,

易知△CHP∽△DQP,故,得DQ=3,由于CD=4,

;

3.如圖2,連接AK,AM,延長AM,

與圓交于點G,連接TG,則

由于,故,;

,故

中,;

故△AMK∽△NMA

;

即:

故存在常數(shù),始終滿足

常數(shù)a=4

解法二:連結(jié)BM,證明

     得

【解析】

1.在直線y=-x-中,令y=0,可求得E的坐標(biāo),即可得到OE的長為5;連接MH,根據(jù)△EMH與△EFO相似即可求得半徑為2;再由EC=MC=2,∠EHM=90°,可知CH是RT△EHM斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得出CH的長;

2.連接DQ、CQ.根據(jù)相似三角形的判定得到△CHP∽△QPD,從而求得DQ的長,在直角三角形CDQ中,即可求得∠D的余弦值,即為cos∠QHC的值;

3.連接AK,AM,延長AM,與圓交于點G,連接TG,由圓周角定理可知,

∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出結(jié)論.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、已知點A和點B(如圖),以點A和點B為其中兩個頂點作位置不同的等腰直角三角形,一共可作出(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,在以點O為圓心的兩個同心圓中,AB經(jīng)過圓心O,且與小圓相交于A,與大圓相交于點B,小圓的切線AC與大圓相交于D,OC平分∠ACB.
(1)證明直線BC是小圓的切線;
(2)試證明:AC+AD=BC;
(3)若AB=8cm,BC=10cm,求大圓與小圓形成的圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知四邊形ABCD,點P為平面內(nèi)一動點.如果∠PAD=∠PBC,那么我們稱點P為四邊形ABCD關(guān)于A、B的等角點.如圖2,以點B為坐標(biāo)原點,BC所在直線為x軸建立平面直角坐標(biāo)系,點C的橫坐標(biāo)為6.
(1)若A、D兩點的坐標(biāo)分別為A(0,4)、D(6,4),當(dāng)四邊形ABCD關(guān)于A、B的等角點P在DC邊上時,則點P的坐標(biāo)為
 
;
(2)若A、D兩點的坐標(biāo)分別為A(2,4)、D(6,4),當(dāng)四邊形ABCD關(guān)于A、B的等角點P在DC邊上時,求點P的坐標(biāo);
(3)若A、D兩點的坐標(biāo)分別為A(2,4)、D(10,4),點P(x,y)為四邊形ABCD關(guān)于A、B的等角點,其中x>2,y>0,求y與x之間的關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,△ABC以點O為旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后得到△A′B′C′.ED是△ABC的中位線,經(jīng)旋轉(zhuǎn)后為線段E′D′.已知BC=4,則E′D′=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,0),點B的坐標(biāo)為(0,-1),AB=
2

(1)如圖1,以點A為圓心,線段AB的長為半徑畫弧,與x軸的負半軸交于點C,過點A作AH⊥BC于H交y軸于D,求點D的坐標(biāo);
(2)如圖2,在線段OA上有一點E滿足S△OEB:S△EAB=1:
2
,直線AN平分△OAB的外角交BE于N.求∠BNA的度數(shù);
(3)如圖3,動點Q為A右側(cè)x軸上一點,另有在第四象限的動點P,動點P、Q,總滿足∠PAB=∠PBA和∠PQA=∠PAQ.①請畫出滿足題意的圖形;②若點B在y軸上運動,其他條件不變,∠ABO=α,請直接用含α的式子表示∠BPQ的值(不需證明).

查看答案和解析>>

同步練習(xí)冊答案