【題目】如圖,梯形ABCD中,AB∥CD,點E、F、G分別是BD、AC、DC的中點.已知兩底差是6,兩腰和是12,則△EFG的周長是 .
【答案】9.
【解析】
試題延長EF交BC于點H,可知EF,F(xiàn)H,F(xiàn)G、EG分別為△BDC、△ABC、△BDC和△ACD的中位線,由三角形中位線定理結(jié)合條件可求得EF+FG+EG,可求得答案.
解:連接AE,并延長交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵點E、F、G分別是BD、AC、DC的中點.
∴BE=DE,
在△AEB和△KED中,
,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF為△ACK的中位線,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG為△BCD的中位線,∴EG=BC,
又FG為△ACD的中位線,∴FG=AD,
∴EG+GF=(AD+BC),
∵兩腰和是12,即AD+BC=12,兩底差是6,即DC﹣AB=6,
∴EG+GF=6,F(xiàn)E=3,
∴△EFG的周長是6+3=9.
故答案為:9.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=-3x+3與坐標軸分別交于A,B兩點,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,直線y=3x-2與y軸交于點F,與線段AB交于點E,將正方形ABCD沿x軸負半軸方向平移a個單位長度,使點D落在直線EF上.有下列結(jié)論:①△ABO的面積為3;②點C的坐標是(4,1);③點E到x軸距離是;
④a=1.其中正確結(jié)論的個數(shù)是( )
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣由88個偶數(shù)排成.現(xiàn)用一個如圖所示的平行四邊形框可以框出四個數(shù);
①圖中平行四邊形框內(nèi)的四個數(shù)有什么關(guān)系?
②在數(shù)陣中任意作一類似(1)中的平行四邊形框,設(shè)其中左上角的一個數(shù)是,那么其他三個數(shù)怎樣表示?
③在這個數(shù)陣的平行四邊形框內(nèi),是否存在和為288的四個數(shù)?若存在,求出這四個數(shù);不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學(xué)們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出了移動電話的兩種計費方式(詳情見下表). 設(shè)一個月內(nèi)使用移動電話主叫的時間為t分鐘
月使用費 | 主叫限定時間 | 主叫超時費 | 被叫 | |
方式一 | 58元 | 150分鐘 | 0.25元/分 | 免費 |
方式二 | 88元 | 350分鐘 | 0.19元/分 | 免費 |
(t為正整數(shù)),請根據(jù)表中提供的信息回答下列問題:
(1)方式一中,當t超過150分鐘時,該月費用表示為: 元(用含t的代數(shù)式表示);方式二中,當t超過350分鐘時,該月費用表示為: 元(用含t的代數(shù)式表示).
(2)當t=300時,哪種計費方式的費用較?請作出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點開始沿一東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負數(shù).爬過的各段路程依次為(單位:厘米):,,,,,,.
通過計算說明蝸牛是否回到起點.
蝸牛離開出發(fā)點最遠時是多少厘米?
在爬行過程中,如果每爬厘米獎勵粒芝麻,則蝸牛一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,E是AB上一點,且DE⊥CE.若AD=1,BC=2,CD=3,則CE與DE的數(shù)量關(guān)系正確的是( )
A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)騎自行車從A地出發(fā)沿同一條路前往B地,他們離A地的距離s(km)與甲離開A地的時間t(h)之間的函數(shù)關(guān)系的圖象如圖所示,根據(jù)圖象提供的信息,有下列說法:①甲、乙同學(xué)都騎行了18km;②甲、乙同學(xué)同時到達B地;③甲停留前、后的騎行速度相同;④乙的騎行速度是;其中正確的說法是( )
A. ①③B. ①④C. ②④D. ②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com