【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點(diǎn)F,過(guò)點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長(zhǎng).
【答案】
(1)證明:如圖,連接OE.
∵CD是圓O的直徑,
∴∠CED=90°.
∵OC=OE,
∴∠1=∠2.
又∵∠PED=∠C,即∠PED=∠1,
∴∠PED=∠2,
∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,
∴OE⊥EP,
又∵點(diǎn)E在圓上,
∴PE是⊙O的切線;
(2)證明:∵AB、CD為⊙O的直徑,
∴∠AEB=∠CED=90°,
∴∠3=∠4(同角的余角相等).
又∵∠PED=∠1,
∴∠PED=∠4,
即ED平分∠BEP;
(3)解:設(shè)EF=x,則CF=2x,
∵⊙O的半徑為5,
∴OF=2x﹣5,
在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x﹣5)2,
解得x=4,
∴EF=4,
∴BE=2EF=8,CF=2EF=8,
∴DF=CD﹣CF=10﹣8=2,
∵AB為⊙O的直徑,
∴∠AEB=90°,
∵AB=10,BE=8,
∴AE=6,
∵∠BEP=∠A,∠EFP=∠AEB=90°,
∴△AEB∽△EFP,
∴ = ,即 = ,
∴PF= ,
∴PD=PF﹣DF= ﹣2= .
【解析】(1)如圖,連接OE.欲證明PE是⊙O的切線,只需推知OE⊥PE即可;(2)由圓周角定理得到∠AEB=∠CED=90°,根據(jù)“同角的余角相等”推知∠3=∠4,結(jié)合已知條件證得結(jié)論;(3)設(shè)EF=x,則CF=2x,在RT△OEF中,根據(jù)勾股定理得出52=x2+(2x﹣5)2 , 求得EF=4,進(jìn)而求得BE=8,CF=8,在RT△AEB中,根據(jù)勾股定理求得AE=6,然后根據(jù)△AEB∽△EFP,得出 = ,求得PF= ,即可求得PD的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完成;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)問(wèn)題進(jìn)行證明:
(1)已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P,求證:AP=BQ.
(2)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D且∠A=∠D.求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,tanA= ,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,給出如下幾個(gè)結(jié)論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結(jié)論的序號(hào)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,CD=1,∠DBC=30°.若將BD繞點(diǎn)B旋轉(zhuǎn)后,點(diǎn)D落在DC延長(zhǎng)線上的點(diǎn)E處,點(diǎn)D經(jīng)過(guò)的路徑 ,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB=4,射線BM和AB互相垂直,點(diǎn)D是AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長(zhǎng)交射線BM于點(diǎn)C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小宇想測(cè)量位于池塘兩端的A、B兩點(diǎn)的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點(diǎn)C處,測(cè)得∠ACF=45°,再向前行走100米到點(diǎn)D處,測(cè)得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校文藝部在全校范圍內(nèi)隨機(jī)抽取一部分同學(xué),對(duì)同學(xué)們喜愛(ài)的四種“明星真人秀”節(jié)目進(jìn)行問(wèn)卷調(diào)查(每位同學(xué)只能選擇一種最喜愛(ài)的節(jié)目),并將調(diào)查結(jié)果整理后分別繪制成如圖所示的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖).
請(qǐng)根據(jù)所給信息回答下列問(wèn)題:
(1)本次問(wèn)卷調(diào)查共調(diào)查了多少名學(xué)生?
(2)請(qǐng)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有1500名學(xué)生,據(jù)此估計(jì)有多少名學(xué)生最喜愛(ài)《奔跑吧兄弟》節(jié)目.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com