【題目】如圖, , ,點 邊上, , 相交于點

(1)求證:
(2)若 ,求 的度數(shù).

【答案】
(1)

證明:因為∠ADE=∠1+∠C=∠2+∠BDE,∠1=∠2,

所以∠C=∠BDE.

在△AEC和△BED 中,

所以ΔΑEC≌ ΔΒΕD


(2)

解:因為ΔΑEC≌ ΔΒΕD,

所以CE=DE,

∠BDE=∠C=


【解析】(1)根據(jù)∠ADE的兩種表示方法:∠1+∠C=∠2+∠BDE,又∠1=∠2,所以∠C=∠BDE.根據(jù)已知的條件,即可由“AAS”判定全等三角形;
(2)由ΔΑEC≌ ΔΒΕD,可得邊相等,則由等腰三角形的底角相等可得∠BDE=∠C=.
【考點精析】本題主要考查了三角形的外角的相關(guān)知識點,需要掌握三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于 AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請了部分同學(xué)參與問卷調(diào)查,統(tǒng)計同學(xué)們一個月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計圖.

請根據(jù)圖中信息解決下列問題:

(1)共有多少名同學(xué)參與問卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計圖和扇形統(tǒng)計圖;

(3)全校共有學(xué)生1500人,請估計該校學(xué)生一個月閱讀2本課外書的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建全國衛(wèi)生城市的號召,某校1 500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖表,根據(jù)圖表信息,以下說法不正確的是( )

A.樣本容量是200

B.D等所在扇形的圓心角為15°

C.樣本中C等所占百分比是10%

D.估計全校學(xué)生成績?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形 中, , , 的中點.過點 ,垂足為 .將 沿點 到點 的方向平移,得到 .設(shè) 、 分別是 的中點,當(dāng)點 與點 重合時,四邊形 的面積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列不等式或不等式組,并把它們的解集在數(shù)軸上表示出來

(1)5x15>4x13;             (2) ;

(3) (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015桂林)全民閱讀深入人心,好讀書,讀好書,讓人終身受益.為滿足同學(xué)們的讀書需求,學(xué)校圖書館準(zhǔn)備到新華書店采購文學(xué)名著和動漫書兩類圖書.經(jīng)了解,20本文學(xué)名著和40本動漫書共需1520元,20本文學(xué)名著比20本動漫書多440元(注:所采購的文學(xué)名著價格都一樣,所采購的動漫書價格都一樣).

1)求每本文學(xué)名著和動漫書各多少元?

2)若學(xué)校要求購買動漫書比文學(xué)名著多20本,動漫書和文學(xué)名著總數(shù)不低于72本,總費(fèi)用不超過2000元,請求出所有符合條件的購書方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB16 cm,點C為線段AB上的一個動點(C不與AB重合),點D,E分別是ACBC的中點.

(1)DE的長;

(2)知識遷移:如圖,已知AOB130°,過角的內(nèi)部任一點C畫射線OC,若OD,OE分別平分AOCBOC,試說明DOE的大小與射線OC的位置無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、D、F、B在同一直線上,AD=BF,AE=BC,且AE∥BC.

求證:(1)EF=CD;(2)EF∥CD.

查看答案和解析>>

同步練習(xí)冊答案