【題目】一張如圖1的長方形鐵皮,四個角都剪去邊長為30厘米的正方形,再四周折起,做成一個有底無蓋的鐵盒如圖2,鐵盒底面長方形的長是4a(cm),寬是3a(cm),這個無蓋鐵盒各個面的面積之和稱為鐵盒的全面積.

(1)請用a的代數(shù)式表示圖1中原長方形鐵皮的面積;

(2)若要在鐵盒的各個外表面漆上某種油漆,每元錢可漆的面積為(cm2),則油漆這個鐵盒需要多少錢(用a的代數(shù)式表示)?

(3)鐵盒的底面積是全面積的幾分之幾(用a的代數(shù)式表示)?若鐵盒的底面積是全面積的,求a的值;

(4)是否存在一個正整數(shù)a,使得鐵盒的全面積是底面積的正整數(shù)倍?若存在,請求出這個a,若不存在,請說明理由.

【答案】(1)12a2+420a+3600;

(2)600a+21000(元);

(3)a=105;

(4)存在鐵盒的全面積是底面積的正整數(shù)倍,這時a=35或7或5或1.

【解析】

試題分析:(1)根據(jù)圖形表示出原長方形鐵皮的面積即可;

(2)根據(jù)原長方形鐵皮的面積剪去四個小正方形的面積,求出鐵盒的表面積,乘以單價即可得到結(jié)果;

(3)用鐵盒的底面積除以全面積即可得出底面積是全面積的幾分之幾,再根據(jù)鐵盒的底面積是全面積的,求出a的值即可;

(4)假設(shè)存在,列出鐵盒的全面積和底面積的公式,求整數(shù)倍數(shù)即可.

解:(1)原鐵皮的面積是(4a+60)(3a+60)=12a2+420a+3600;

(2)油漆這個鐵盒的表面積是:12a2+2×30×4a+2×30×3a=12a2+420a,

則油漆這個鐵盒需要的錢數(shù)是:(12a2+420a)÷=(12a2+420a)×=600a+21000(元);

(3)鐵盒的底面積是全面積的=;

根據(jù)題意得:=,

解得a=105;

(4)鐵盒的全面積是4a×3a+4a×30×2+3a×30×2=12a2+420a,

底面積是12a2,

假設(shè)存在正整數(shù)n,使12a2+420a=n(12a2

則(n﹣1)a=35,

則a=35,n=2或a=7,n=6或a=5,n=8或a=1,n=36

所以存在鐵盒的全面積是底面積的正整數(shù)倍,這時a=35或7或5或1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,兩位家長計劃帶領(lǐng)若干名學(xué)生去旅游,他們聯(lián)系了報價均為每人1000元的兩家旅行社.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩位家長全額收費,學(xué)生都按7折收費;乙旅行社的優(yōu)惠條件是:學(xué)生、家長都按8折收費.假設(shè)這兩位家長帶領(lǐng)x名學(xué)生去旅行,甲、乙旅行社的收費分別為y,y,

(1)寫出y,yx的函數(shù)關(guān)系式.

(2)學(xué)生人數(shù)在什么情況下,選擇哪個旅行社合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AMBN,A60°,點P是射線AM上一動點(A不重合),BCBD分別平分∠ABP和∠PBN,分別交射線AM于點C、D.

(1)求∠CBD的度數(shù);

(2)當(dāng)點P運動時,∠APB∶∠ADB的度數(shù)比值是否發(fā)生變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;

(3)當(dāng)點P運動到使∠ACBABD時,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB⊙O的直徑,AC、AD⊙O的兩弦,已知AB=16,AC=8,AD=,求∠DAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水果販子在批發(fā)市場按每千克1.8元批發(fā)了若干千克的西瓜進城出售,為方便,他帶了一些零錢備用.他先按市場價售出一些后,又降價出售.售出西瓜千克數(shù)x與他手中持有的錢數(shù)y元(含備用零錢)的關(guān)系如圖所示,結(jié)合圖象回答下列問題:

(1)農(nóng)民自帶的零錢是多少?

(2)降價前每千克西瓜出售的價格是多少?

(3)隨后他按每千克下降0.5元將剩余的西瓜售完,這時他手中的錢(含備用的錢)是450元,問他一共批發(fā)了多少千克的西瓜?

(4)請問這個水果販子一共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下表中的二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)y的對應(yīng)值,可判斷二次函數(shù)的解析式為( 。

x

0

1

2

y

A. y=x2x B. y=x2+x

C. y=x2x+ D. y=x2+x+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c與x軸交于A(﹣2,0),B(4,0)兩點,頂點C到x軸的距離為2,則此拋物線的解析式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)進行體育教學(xué)改革,同時開設(shè)籃球、排球、足球、體操課、學(xué)生可根據(jù)自己的愛好任選其一,體育老師根據(jù)七年級學(xué)生的報名情況進行了統(tǒng)計,并繪制了下面尚未完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)統(tǒng)計圖解答下列問題:

(1)該校七年級共有多少名學(xué)生?

(2)將兩個統(tǒng)計圖補充完整;

(3)從統(tǒng)計圖中你還能得到哪些信息?(寫出兩條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按要求解一元二次方程

14x2﹣8x+1=0(配方法)27x5x+2=65x+2)(因式分解法)

33x2+52x+1=0(公式法)4x2﹣2x﹣8=0

查看答案和解析>>

同步練習(xí)冊答案