如圖所示,在平常對(duì)某種藥品的需求量y1(萬(wàn)件),供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+50,y2=2x-22.當(dāng)y1=y2時(shí),該藥品的價(jià)格稱為穩(wěn)定價(jià)格,需求量稱為穩(wěn)定需求量.
(1)圖象中a,b,c的值分別為:a=______,b=______,c=______.
(2)求該藥品的穩(wěn)定價(jià)格與穩(wěn)定需求量.
(3)若供應(yīng)量和需求量這兩種量之間相差3萬(wàn)件,求此時(shí)對(duì)應(yīng)的價(jià)格.
(1)當(dāng)y2=0時(shí),2x-22=0,解得:x=11,
則a=11;
當(dāng)y1=0時(shí),-x+50=0,解得:x=50,
則b=50,
當(dāng)x=50時(shí),y2=2×50-22=78,
則c=78;

(2)聯(lián)立兩個(gè)解析式得
y=2x-22
y=-x+50
,解得
x=24
y=26
,
答:該藥品的穩(wěn)定價(jià)格為24元/件,穩(wěn)定需求量為26萬(wàn)件;

(3)當(dāng)y1-y2=3時(shí),-x+50-(2x-22)=3,解得:x=23;
當(dāng)y2-y1=3時(shí),(2x-22)-(-x+50)=3,解得:x=25.
答:此時(shí)對(duì)應(yīng)的價(jià)格為23元/件或25元/件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(3,6)與點(diǎn)(
1
2
,-
1
2
),求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一次函數(shù)y=-
3
4
x+3的圖象分別與x軸、y軸交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.則過(guò)B、C兩點(diǎn)直線的解析式為( 。
A.y=
1
7
x+3
B.y=
1
5
x+3
C.y=
1
4
x+3
D.y=
1
3
x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,6),點(diǎn)B是x軸正半軸上的一個(gè)動(dòng)點(diǎn),連接AB,取AB的中點(diǎn)M,將線段MB繞著點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段BC.過(guò)點(diǎn)B作x軸的垂線交直線AC于點(diǎn)D.設(shè)點(diǎn)B坐標(biāo)是(t,0).
(1)當(dāng)t=4時(shí),求直線AB的解析式;
(2)用含t的代數(shù)式表示點(diǎn)C的坐標(biāo)及△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)y=圖象過(guò)點(diǎn)A(2,4),B(0,3)、題目中的矩形部分是一段因墨水污染而無(wú)法辨認(rèn)的文字.
(1)根據(jù)現(xiàn)有的信息,請(qǐng)求出題中的一次函數(shù)的解析式.
(2)根據(jù)關(guān)系式畫出這個(gè)函數(shù)圖象,
(3)過(guò)點(diǎn)B能不能畫出一直線BC將△ABO(O為坐標(biāo)原點(diǎn))分成面積比為1:2的兩部分?如能,可以畫出幾條,并求出其中一條直線所對(duì)應(yīng)的函數(shù)關(guān)系式,其它的直接寫出函數(shù)關(guān)系式;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)y=
3
+m(O<m≤1)的圖象為直線l,直線l繞原點(diǎn)O旋轉(zhuǎn)180°后得直線l',△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-
3
,-1)、B(
3
,-1)、C(0,2).
(1)直線AC的解析式為______,直線l'的解析式為______(可以含m);
(2)如圖,l、l'分別與△ABC的兩邊交于E、F、G、H,當(dāng)m在其范圍內(nèi)變化時(shí),判斷四邊形EFGH中有哪些量不隨m的變化而變化?并簡(jiǎn)要說(shuō)明理由;
(3)將(2)中四邊形EFGH的面積記為S,試求m與S的關(guān)系式,并求S的變化范圍;
(4)若m=1,當(dāng)△ABC分別沿直線y=x與y=
3
x平移時(shí),判斷△ABC介于直線l,l'之間部分的面積是否改變?若不變,請(qǐng)指出來(lái);若改變,請(qǐng)寫出面積變化的范圍.(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)約用水的目的,制定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月用水不超過(guò)6m3,水費(fèi)按a元/m3收費(fèi);若超過(guò)
6m3,6m3以內(nèi)的仍按a元/m3收費(fèi),超過(guò)6m3的部分以b元/m3收費(fèi).某戶居民5、6月份用水量和水費(fèi)如下表:
月份用水量(m3水費(fèi)(元)
557.5
6927
設(shè)該用戶每月用水量為xm3,應(yīng)交水費(fèi)y元.
(1)求出a,b的值;
(2)寫出用水量不超過(guò)6m3和超過(guò)6m3時(shí),y與x之間的函數(shù)關(guān)系式;
(3)若該用戶7月份用水量為8m3,他應(yīng)交多少元水費(fèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線l1的解析表達(dá)式為:y=-3x+3,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過(guò)點(diǎn)A,B,直線l1,l2交于點(diǎn)C.
(1)求直線l2的函數(shù)關(guān)系式;
(2)求△ADC的面積;
(3)若點(diǎn)H為坐標(biāo)平面內(nèi)任意一點(diǎn),在坐標(biāo)平面內(nèi)是否存在這樣的點(diǎn)H,使以A、D、C、H為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將長(zhǎng)、寬、高分別為a,b,c(a>b>c,單位:cm)的三塊相同的長(zhǎng)方體按圖所示的三種方式放入三個(gè)底面面直徑為d(d>
a2+b2
),高為h的相同圓柱形水桶中,再向三個(gè)水桶內(nèi)以相同的速度勻速注水,直至注滿水桶為止,水桶內(nèi)的水深y(cm)與注水時(shí)間t(s)的函數(shù)關(guān)系如圖所示,則注水速度為( 。
A.30cm2/sB.32cm2/sC.34cm2/sD.40cm2/s

查看答案和解析>>

同步練習(xí)冊(cè)答案