【題目】五名學(xué)生投籃球,每人投10次,統(tǒng)計(jì)他們每人投中的次數(shù).得到五個(gè)數(shù)據(jù),并對(duì)數(shù)據(jù)進(jìn)行整理和分析給出如下信息:
平均數(shù) | 中位數(shù) | 眾數(shù) |
m | 6 | 7 |
則下列選項(xiàng)正確的是( )
A.可能會(huì)有學(xué)生投中了8次
B.五個(gè)數(shù)據(jù)之和的最大值可能為30
C.五個(gè)數(shù)據(jù)之和的最小值可能為20
D.平均數(shù)m一定滿足
【答案】D
【解析】
先根據(jù)中位數(shù)和眾數(shù)的定義得到7出現(xiàn)的次數(shù)是2次,6出現(xiàn)1次,則最大的三個(gè)數(shù)分別是6、7、7,據(jù)此一一判斷選項(xiàng)即可得到答案;
解:因?yàn)橹形粩?shù)是6,眾數(shù)是7,
則7至少出現(xiàn)2次,因此最大的三個(gè)數(shù)只能為:6、7、7,
故8不能出現(xiàn),故A選項(xiàng)錯(cuò)誤;
當(dāng)5個(gè)數(shù)的和最大時(shí)這5個(gè)數(shù)是:4、5、6、7、7,此時(shí)和為:29,故B選項(xiàng)錯(cuò)誤;
兩個(gè)較小的數(shù)一定是小于6的非負(fù)整數(shù),且不相等,故最小的兩個(gè)數(shù)最小只能是0、1,故五個(gè)數(shù)的和的最小是0+1+6+7+7=21,故C選項(xiàng)錯(cuò)誤;
當(dāng)5個(gè)數(shù)的和最大時(shí)這5個(gè)數(shù)是:4、5、6、7、7,平均數(shù)為: ,
當(dāng)5個(gè)數(shù)的和最小時(shí)這5個(gè)數(shù)是:0、1、6、7、7,平均數(shù)為:,
故平均數(shù)m一定滿足,D選項(xiàng)正確;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知均是的函數(shù),下表是與的幾組對(duì)應(yīng)值.
小聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的與之間的變化規(guī)律,分別對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小聰?shù)奶骄窟^程,請(qǐng)補(bǔ)充完整:
(1)如圖,在同一平面直角坐標(biāo)系中,描出上表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象;
(2)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)時(shí),對(duì)應(yīng)的函數(shù)值約為_________;
②寫出函數(shù)的一條性質(zhì):_________________________;
③當(dāng)時(shí),的取值范圍是_________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,∠DAB的角平分線交邊CD于點(diǎn)E.點(diǎn)P在射線AE上以每秒個(gè)單位長(zhǎng)度的速度沿射線AE方向從點(diǎn)A開始運(yùn)動(dòng);過點(diǎn)P作PQ⊥AB于點(diǎn)Q,以PQ為邊向右作平行四邊形,點(diǎn)N在射線AE上,且AP=PN.設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.
(1)PQ= (用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)M落在BC邊上時(shí),求t的值.
(3)設(shè)平行四邊形PQMN與矩形ABCD重合部分面積為S,當(dāng)點(diǎn)P在線段AE上運(yùn)動(dòng)時(shí),求S與t 的函數(shù)關(guān)系式.
(4)直接寫出在點(diǎn)P、Q運(yùn)動(dòng)的過程中,整個(gè)圖形中形成的三角形存在全等三角形時(shí)t的值(不添加任何輔助線).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+6(a≠0)交x軸于點(diǎn)A(6,0)和點(diǎn)B(-1,0),交y軸于點(diǎn)C.
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)如圖(1),點(diǎn)P是拋物線上位于直線AC上方的動(dòng)點(diǎn),過點(diǎn)P分別作x軸,y軸的平行線,交直線AC于點(diǎn)D,E,當(dāng)PD+PE取最大值時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖(2),點(diǎn)M為拋物線對(duì)稱軸l上一點(diǎn),點(diǎn)N為拋物線上一點(diǎn),當(dāng)直線AC垂直平分△AMN的邊MN時(shí),求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2﹣8ax+6(a>0)的圖象與x軸分別交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D在拋物線的對(duì)稱軸上,且四邊形ABDC為平行四邊形.
(1)求此拋物線的對(duì)稱軸,并確定此二次函數(shù)的表達(dá)式;
(2)點(diǎn)E為x軸下方拋物線上一點(diǎn),若△ODE的面積為12,求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,設(shè)拋物線的頂點(diǎn)為M,點(diǎn)P是拋物線的對(duì)稱軸上一動(dòng)點(diǎn),連接PE、EM,過點(diǎn)P作PE的垂線交拋物線于點(diǎn)Q,當(dāng)∠PQE=∠EMP時(shí),求點(diǎn)Q到拋物線的對(duì)稱軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,P是上的動(dòng)點(diǎn),D是延長(zhǎng)線上的定點(diǎn),連接交于點(diǎn)Q.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)P在上的不同位置,畫圖測(cè)量,得到了線段的長(zhǎng)度(單位:cm)的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | |
4.99 | 4.56 | 4.33 | 4.23 | 4.53 | 4.95 | 5.51 | |
4.99 | 3.95 | 3.31 | 2.95 | 2.80 | 2.79 | 2.86 |
在的長(zhǎng)度這三個(gè)量中,確定_________的長(zhǎng)度是自變量,_________的長(zhǎng)度和_________的長(zhǎng)度都是這個(gè)自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時(shí),的長(zhǎng)度約為_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象與直線交于點(diǎn)
(1)求k的值;
(2)已知點(diǎn),過點(diǎn)P作垂直于x軸的直線,交直線于點(diǎn)B,交函數(shù)于點(diǎn)C.
①當(dāng)時(shí),判斷線段與的數(shù)量關(guān)系,并說明理由;
②若,結(jié)合圖象,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長(zhǎng)線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)分別是上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),且,延長(zhǎng)到,使,連接.
(1)依題意將圖形補(bǔ)全;
(2)小華通過觀察、實(shí)驗(yàn)、提出猜想:在點(diǎn)運(yùn)動(dòng)過程中,始終有.經(jīng)過與同學(xué)們充分討論,形成了幾種證明的想法:
想法一:連接,證明是等腰直角三角形;
想法二:過點(diǎn)作的垂線,交的延長(zhǎng)線于,可得是等腰直角三角形,證明;
……
請(qǐng)參考以上想法,幫助小華證明.(寫出一種方法即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com