【題目】如圖二次函數(shù)的圖像交軸于、,交軸于,直線平行于周,與拋物線另一個(gè)交點(diǎn)為.
(1)求函數(shù)的解析式;
(2)若是軸上的動(dòng)點(diǎn),是拋物線上的動(dòng)點(diǎn),求使以、、、為頂點(diǎn)的四邊形是平行四邊形的的橫坐標(biāo).
【答案】(1);(2)1或或或5.
【解析】
(1)先設(shè)二次函數(shù)的解析式為,展開得,
再把代入,求出a的值即可;
(2)先聯(lián)立方程組,求出點(diǎn)坐標(biāo)為,當(dāng)以、、、為頂點(diǎn)四邊形是平行四邊形時(shí),有兩種情況討論,是平行四邊形的邊時(shí)和是平行四邊形的對(duì)角線時(shí),分別求解即可.
解:(1)二次函數(shù)的圖像交軸于、,
設(shè)二次函數(shù)的解析式為
展開得:,
二次函數(shù)的圖像交軸于,
,得
二次函數(shù)的解析式為
(2)聯(lián)立方程組得:,
解得或,
∴點(diǎn)坐標(biāo)為,
當(dāng)以、、、為頂點(diǎn)四邊形是平行四邊形時(shí),有兩類情形;
①是平行四邊形的邊時(shí),
聯(lián)立方程組,
解得,
如圖,此時(shí),或或
②是平行四邊形的對(duì)角線時(shí)
、兩點(diǎn)的中點(diǎn)坐標(biāo)為,
設(shè),可得的坐標(biāo)為,
將的坐標(biāo)代入,
得,解得(舍去),,
得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,內(nèi)接于,AD是直徑,的平分線交BD于H,交于點(diǎn)C,連接DC并延長,交AB的延長線于點(diǎn)E.
(1)求證:;
(2)若,求的值
(3)如圖2,連接CB并延長,交DA的延長線于點(diǎn)F,若,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一動(dòng)點(diǎn),G是BC邊上的一動(dòng)點(diǎn),GE∥AD分別交AC、BA或其延長線于F、E兩點(diǎn)
(1)如圖1,當(dāng)BC=5BD時(shí),求證:EG⊥BC;
(2)如圖2,當(dāng)BD=CD時(shí),FG+EG是否發(fā)生變化?證明你的結(jié)論;
(3)當(dāng)BD=CD,FG=2EF時(shí),DG的值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖場計(jì)劃用96米的竹籬笆圍成如圖所示的①、②、③三個(gè)養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AG∶BG=3∶2.設(shè)BG的長為2x米.
(1)用含x的代數(shù)式表示DF= ;
(2)x為何值時(shí),區(qū)域③的面積為180平方米;
(3)x為何值時(shí),區(qū)域③的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,關(guān)于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣;x+=c+的解是x1=c,x2=;x+=c+的解是x1=c,x2=;……
(1)請(qǐng)觀察上述方程與解的特征,比較關(guān)于x的方程x+=c+(a≠0)與它們的關(guān)系猜想它的解是什么,并利用“方程的解”的概念進(jìn)行驗(yàn)證.
(2)可以直接利用(1)的結(jié)論,解關(guān)于x的方程:x+=a+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過C作CG∥AE交BA的延長線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=10,高AD=8,M、N、P分別在邊AB、BC、AC上移動(dòng),但不與A、B、C重合,連接MN、NP、MP,且MP始終與BC保持平行,AD與MP相交于點(diǎn)E,設(shè)MP=x,△MNP的面積用y表示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x取什么值時(shí),y有最大值,并求出的最大值;
(3)當(dāng)x取什么值時(shí),△MNP是等腰直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個(gè)盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個(gè)盒子,盒中的紙片既是軸對(duì)稱圖形又是中心對(duì)稱圖形的概率是 ;
(2)攪勻后先從中摸出個(gè)盒子(不放回),再從余下的個(gè)盒子中摸出個(gè)盒子,把摸出的個(gè)盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對(duì)稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com