如圖所示,一般書本的紙張是原紙張多次對開得到的,矩形ABCD沿EF對開后,再把矩形EFCD沿MN對開,依次類推,若各種開本的矩形都相似,那么=       

試題分析:根據(jù)矩形ABCD的面積是矩形ABFE面積的2倍,得出相似圖形面積比是相似比的平方,進(jìn)而得出的值.
試題解析:∵矩形ABCD的面積是矩形ABFE面積的2倍,
∵各種開本的矩形都相似,
∴(2=

故答案為:
考點(diǎn): 相似多邊形的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥CD,∠DAB=90°,AC⊥BC.

(1)求證:△ADC∽△BCA;
(2)若AB=9cm,AC=6cm,求梯形ABCD中位線的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

老師要求同學(xué)們在圖①中內(nèi)找一點(diǎn)P,使點(diǎn)P到OM、ON的距離相等.
小明是這樣做的:在OM、ON上分別截取OA=OB,連結(jié)AB,取AB中點(diǎn)P,點(diǎn)P即為所求.
請你在圖②中的內(nèi)找一點(diǎn)P,使點(diǎn)P到OM的距離是到ON距離的2倍.要求:簡單敘述做法,并對你的做法給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖所示,如果你的位置在點(diǎn)A,你能看到后面那座高大的建筑物嗎?為什么?

(2)如果兩樓之間相距MN=m,兩樓的高各為10m和30m,則當(dāng)你至少與M樓相距多少m時(shí),才能看到后面的N樓?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平行四邊形ABCD中,E為CD上一點(diǎn),連結(jié)AE,BD,且AE,BD交于點(diǎn)F,SDEF∶SABF=4∶25,求DE∶EC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點(diǎn),DE與CF交于點(diǎn)G.(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則       (填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:
當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得=成立?并證明你的結(jié)論;
(3)如圖3,若BA="BC=" 3,DA="DC=" 4,∠BAD= 90°,DE⊥CF.則的值為        

圖1                     圖2                     圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖:在△ABC中,點(diǎn)D、E分別在AB、AC上,∠ADE=∠C,且AD∶AC=2∶3,那么DE∶BC等于(   )

A.3∶1      B.1∶3            C.3∶4     D.2∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△和△中,,為線段上一點(diǎn),且
求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,E為AB的中點(diǎn),G,F(xiàn)分別為AD,BC邊上的點(diǎn),若AG=1,BF=2,∠GEF=90°,則GF的長為(   )
A.B.2C.D.3

查看答案和解析>>

同步練習(xí)冊答案