如圖,在矩形紙片ABCD中,AB=12,BC=5,點E在AB上,將△DAE沿DE折疊,使點A落在對角線BD上的點A′處,則AE的長為_________

試題分析:∵AB=12,BC=5,
∴AD=5,
∴BD==13,
根據(jù)折疊可得:AD=A′D=5,
∴A′B=13﹣5=8,
設AE=x,則A′E=x,BE=12﹣x,
在Rt△A′EB中:(12﹣x)2=x2+82
解得:x=,
故答案為:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若動點P從A點出發(fā),以每秒4cm的速度沿線段AD、DC向C點運動;動點Q從C點出發(fā)以每秒5cm的速度沿CB向B點運動.當Q點到達B點時,動點P、Q同時停止運動.設點P、Q同時出發(fā),并運動了t秒,

(1)直角梯形ABCD的面積為             cm2.
(2)當t=     秒時,四邊形PQCD成為平行四邊形?
(3)當t=     秒時,AQ=DC;
(4)是否存在t,使得P點在線段DC上且PQ⊥DC?若存在,求出此時t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

A,B,C三個村莊在一條東西走向的公路沿線,如圖所示,AB=2km,BC=3km,在B村的正北方向有一個D村,測得∠ADC=450今將△ACD區(qū)域規(guī)劃為開發(fā)區(qū),除其中4 km2的水塘外,均作為建筑或綠化用地,試求這個開發(fā)區(qū)的建筑及綠化用地的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,矩形ABCD的對角線相交于點O,DE∥CA,AE∥BD.

(1)求證:四邊形AODE是菱形;
(2)若將題設中“矩形ABCD”這一條件改為“菱形ABCD”,其余條件不變,則四邊形AODE的形狀是什么?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,Rt△PQR中,∠PQR=90°,當PQ=RQ時,.根據(jù)這個結論,解決下面問題:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是線段BC上一動點,點P從點B出發(fā),以每秒個單位的速度向C點運動.

(1)當BP=                     時,四邊形APCD為平行四邊形;
(2)求四邊形ABCD的面積;
(3)設P點在線段BC上的運動時間為t秒 ,當P運動時,△APB可能是等腰三角形嗎?如能,請求出t的值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點,過點C作AB的平行線交AE的延長線于F,連結BF.

(1)求證:CF=BD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一個等腰梯形的兩底之差為12,高為6,則等腰梯形的銳角為(   )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將矩形紙片ABCD(圖①)按如下步驟操作:(1)以過點A的直線為折痕折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖②);(2)以過點E的直線為折痕折疊紙片,使點A落在BC邊上,折痕EF交AD邊于點F(如圖③);(3)將紙片收展平,那么∠AFE的度數(shù)為(        ).
A.60°B.67.5°C.72°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.

(1)證明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,試證明四邊形ABCD是菱形;
(3)在(2)的條件下,試確定E點的位置,∠EFD=∠BCD,并說明理由.

查看答案和解析>>

同步練習冊答案