【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB= ,AA1=2,D為AA1的中點,BD與AB1交于點O,CO⊥側(cè)面ABB1A1 .
(1)證明:CD⊥AB1;
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.
【答案】
(1)證明:由題意可知,在Rt△ABD中,tan∠ABD= = ,
在Rt△ABB1中,tan∠AB1B= = .
又因為0<∠ABD,∠AB1B ,所以∠ABD=∠AB1B,
所以∠ABD+∠BAB1=∠AB1B+∠BAB1= ,
所以AB1⊥BD.
又CO⊥側(cè)面ABB1A1,且AB1側(cè)面ABB1A1,∴AB1⊥CO.又BD與CO交于點O,所以AB1⊥平面CBD.
又因為BC平面CBD,所以BC⊥AB1.
(2)解:如圖所示,以O(shè)為原點,分別以O(shè)D,OB1,OC所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
則A(0,﹣ ,0),B(﹣ ,0,0),C(0,0, ),
B1(0, ,0),D( ,0,0).
又因為 =2 ,所以C1( , , ).
所以 =(﹣ , ,0), =(0, , ), =( , , ).
設(shè)平面ABC的法向量為 =(x,y,z),
則由 ,得
令y= ,則z=﹣ ,x=1, =(1, ,﹣ )是平面ABC的一個法向量.
設(shè)直線C1D與平面ABC所成的角為α,
則sin α= = .
故直線C1D與平面ABC所成角的正弦值為 .
【解析】(1)推導(dǎo)出∠ABD=∠AB1B,從而∠ABD+∠BAB1=∠AB1B+∠BAB1= ,進而AB1⊥BD.由線面垂直得AB1⊥CO.從而AB1⊥平面CBD.由此能證明BC⊥AB1 . (2)以O(shè)為原點,分別以O(shè)D,OB1 , OC所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線C1D與平面ABC所成角的正弦值.
【考點精析】根據(jù)題目的已知條件,利用空間中直線與直線之間的位置關(guān)系和空間角的異面直線所成的角的相關(guān)知識可以得到問題的答案,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數(shù)g(x)至少存在一個零點,則實數(shù)m的取值范圍是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+ ]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家為了解銷售轎車臺數(shù)與廣告宣傳費之間的關(guān)系,得到如表統(tǒng)計數(shù)據(jù)表:根據(jù)數(shù)據(jù)表可得回歸直線方程 ,其中 , ,據(jù)此模型預(yù)測廣告費用為9萬元時,銷售轎車臺數(shù)為( )
廣告費用x(萬元) | 2 | 3 | 4 | 5 | 6 |
銷售轎車y(臺數(shù)) | 3 | 4 | 6 | 10 | 12 |
A.17
B.18
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著社會發(fā)展,廣州市在一天的上下班時段經(jīng)常會出現(xiàn)堵車嚴重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別;T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10)嚴重擁堵.早高峰時段(T≥3),從廣州市交通指揮中心隨機選取了50個交通路段進行調(diào)查,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(1)據(jù)此直方圖,估算交通指數(shù)T∈[3,9)時的中位數(shù)和平均數(shù);
(2)據(jù)此直方圖,求市區(qū)早高峰馬路之間的3個路段至少有2個嚴重擁堵的概率;
(3)某人上班路上所用時間,若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘;中度擁堵為45分鐘;嚴重擁堵為60分鐘,求此人上班所用時間的數(shù)學(xué)期望.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當(dāng)a=﹣2時,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當(dāng)x∈[﹣a,1]時,不等式f(x)≤g(x)有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B的大。
(2)已知b= ,BD為AC邊上的高,求BD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,則(m﹣1)2+(n﹣1)2的最小值是( 。
A.6
B.3
C.﹣3
D.0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論: ① = ;② = ;③ ;④ =
其中正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com