【題目】如圖,在ABC中,AB=AC,BC=4ABC的面積是16,AC邊的垂直平分線EF分別交ACAB邊于點E,F. 若點DBC邊的中點,點M為線段EF上一動點,則CDM周長的最小值為(

A.4B.5C.10D.8

【答案】C

【解析】

連接ADAM,由于ABC是等腰三角形,點DBC邊的中點,故ADBC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關(guān)于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.

連接AD,AM
∵△ABC是等腰三角形,點DBC邊的中點,


ADBC,
SABC=BCAD=×4×AD=16,解得AD=8,
EF是線段AC的垂直平分線,
∴點C關(guān)于直線EF的對稱點為點A
MA=MC,
AD≤AM+MD,
AD的長為CM+MD的最小值,
∴△CDM的周長最短=CM+MD+CD=AD+BC=8+×4=8+2=10
故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60+3)海里B處測得C在北偏東45°方向上,A處測得C在北偏西30°方向上,在海岸線AB上有一等他D,測得AD=100海里

1分別求出ACBC(結(jié)果保留根號)

2已知在燈塔D周圍80海里范圍內(nèi)有暗礁群,A處海監(jiān)船沿AC前往C處盤看,圖中有無觸礁的危險?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于兩點,點在原點的左側(cè),點的坐標為,與軸交于點,點是直線下方的拋物線上一動點.

求這個二次函數(shù)的表達式.

連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,點的中點,點在射線上,點在射線上,.

1)如圖1,若點點重合,求證:;

2)如圖2,若點在線段上,點在線段上,求的值;

3)如圖3,若,直接寫出的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從A地到B地的公路需要經(jīng)過C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,CAB=34°,∠CBA=45°,求改直后公路AB的長(結(jié)果精確到0.1千米)

(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在EBD中,EB=ED,CBD上,CE=CD,BECE,ACE延長線上一點,EA=EC.

1)求∠EBC的度數(shù);

2)求證ABC為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點MMEy軸于點E,連結(jié)BEMN于點F.已知點A的坐標為(﹣1,0.

1)求該拋物線的解析式及頂點M的坐標;

2)求△EMF△BNF的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.

例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).

(1)則DAO=  ,DBO=  ;

(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標;

(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

同步練習冊答案