【題目】隨著出行方式的多樣化,某地區(qū)打車有三種乘車方式,收費標(biāo)準(zhǔn)如下(假設(shè)打車的平均車速為30千米/小時):

網(wǎng)約出租車

網(wǎng)約順風(fēng)車

網(wǎng)約專車

3千米以內(nèi):12

1.5/千米

2/千米

超過3千米的部分:2.4/千米

0.5/分鐘

0.6/分鐘

(如:乘坐6千米,耗時12分鐘,網(wǎng)約出租車的收費為:12+2.4×6-3=19.2(元);網(wǎng)約順風(fēng)車的收費為:6×1.5+12×0.5=15(元);網(wǎng)約專車的收費為:6×2+12×0.6=19.2(元))

請據(jù)此信息解決如下問題:

1)王老師乘車從縱棹園去汽車站,全程8千米,如果王老師乘坐網(wǎng)約出租車,需要支付的打車費用為______元;

2)李校長乘車從縱掉園去生態(tài)園,乘坐網(wǎng)約順風(fēng)車比乘坐網(wǎng)約出租車節(jié)省了2元.求從縱棹園去生態(tài)園的路程;

3)網(wǎng)約專車為了和網(wǎng)約順風(fēng)車競爭客戶,分別推出了優(yōu)惠方式:網(wǎng)約順風(fēng)車對于乘車路程在5千米以上(含5千米)的客戶每次收費立減6元;網(wǎng)約專車打車車費一律七五折優(yōu)惠.對采用哪一種打車方式更合算提出你的建議.

【答案】(1)24(2)28千米(3)見解析

【解析】

1)根據(jù)表格計算得出需要支付的費用即可;

2)設(shè)從縱棹園去生態(tài)園的路程為x千米,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果;

3)分別表示出網(wǎng)約專車和網(wǎng)約順風(fēng)車的收費數(shù),兩者相等求出x的值,即可確定出不同x的范圍時,更為合算的方式.

1)根據(jù)題意得:12+2.4×8-3=12+12=24(元),

則需要支付的打車費用為24元;

故答案為:24

2)設(shè)從縱棹園去生態(tài)園的路程為x千米,

根據(jù)題意得:1.5x+×60×0.5=12+2.4x-3-2,

解得:x=28

則從縱棹園去生態(tài)園的路程為28千米;

3)不立減網(wǎng)約順風(fēng)車:1.5x+×60×0.5=2.5x,網(wǎng)約專車:(2x+×60×0.6×=2.4x,

當(dāng)2.5x-6=2.4x時,x=60,

則當(dāng)0≤x5時,由2.5x2.4,得到此時網(wǎng)約專車合算;

當(dāng)5≤x60時,網(wǎng)約順風(fēng)車合算;

當(dāng)x=60時,兩車一樣;

當(dāng)x60時,網(wǎng)約專車合算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,過等腰直角三角形ABC的直角頂點A作直線AP,點B關(guān)于直線AP的對稱點為E,連接BECE,其中CE交直線AP于點F

(1)依題意補全圖形;

(2)若∠PAB=16°,求∠ACF的度數(shù);

(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB,FEFC之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,點D、E分別是△ABC邊AC、BC上的點,點P是一動點.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2= °;

(2)若點P在邊AB上運動,如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?說明理由

(3)若點P在Rt△ABC斜邊BA的延長線上運動(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了文明在我身邊攝影比賽.已知每幅參賽作品成績記為x(60x100).校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

60x<70

18

0.36

70x<80

17

c

80x<90

a

0.24

90x<100

b

0.06

合計

1

根據(jù)以上信息解答下列問題:

(1)統(tǒng)計表中c的值為________;樣本成績的中位數(shù)落在分?jǐn)?shù)段________中;

(2)補全頻數(shù)直方圖;

(3)80分以上(80)的作品將被組織展評,試估計全校被展評的作品數(shù)量是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1

(1)當(dāng)∠A為70°時,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2,∠A2BC與A2CD的平分線交于A3,如此繼續(xù)下去可得A4、…、An,請寫出∠A與∠An 的數(shù)量關(guān)系____________;

(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=  

(4)如圖3,若E為BA延長線上一動點,連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動時有下面兩個結(jié)論:①∠Q+∠A1的值為定值;②∠Q —∠A1的值為定值.

其中有且只有一個是正確的,請寫出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列敘述中,正確的有( )

①如果,那么;②滿足條件n不存在;

③任意一個三角形的三條高所在的直線相交于一點,且這點一定在三角形的內(nèi)部;

④ΔABC中,若∠A+∠B=2∠C, ∠A-∠C=40°,則這個△ABC為鈍角三角形.

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=40°,AB的垂直平分線交AB于點D,交AC于點E,連接BE,則∠CBE的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點A(6,0),又點B(xy)在第一象限內(nèi),且xy=8,設(shè)△AOB的面積是S.

(1)寫出Sx之間的函數(shù)解析式,并求出x的取值范圍;

(2)畫出(1)中所求函數(shù)的圖象.

查看答案和解析>>

同步練習(xí)冊答案