【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC90°EBC的中點(diǎn),AEBD相交于點(diǎn)F,若BC4,∠CBD30°,則AE的長為( )

A.B.C.D.

【答案】D

【解析】

如圖,作EHABH,利用∠CBD的余弦可求出BD的長,利用∠ABD的余弦可求出AB的長,利用∠EBH的正弦和余弦可求出BH、HE的長,即可求出AH的長,利用勾股定理求出AE的長即可.

如圖,作EHABH,

Rt△BDC中,BC4,∠CBD30°,

BDBC·cos30°=2,

BD平分∠ABC,∠CBD30°,

∴∠ABD=30°,∠EBH=60°,

Rt△ABD中,∠ABD30°BD2,

ABBD·cos30°=3,

∵點(diǎn)EBC中點(diǎn),

BEEC2,

Rt△BEH中,BHBE·cosEBH1,HEEH·sinEBH

AH=AB-BH=2,

Rt△AEH中,AE,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)邊上的一點(diǎn),且,,過點(diǎn)于點(diǎn),若,則的面積為(

A.B.4C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)大于1的自然數(shù),除了1和它自身外,不能被其他自然數(shù)整除的數(shù)叫做質(zhì)數(shù),否則稱為合數(shù).其中,10既不是質(zhì)數(shù)也不是合數(shù).數(shù)學(xué)家歐幾里得在《幾何原本》中對此進(jìn)行過詳細(xì)論述.一個(gè)較大自然數(shù)是質(zhì)數(shù)還是合數(shù)通常用“N來判斷,主要分為三個(gè)步驟:第一步,找出大于N且最接近N的平方數(shù);第二步,用小于的所有質(zhì)數(shù)去除N;第三步,如果這些質(zhì)數(shù)都不能整除N,那么N就是質(zhì)數(shù);如果這些質(zhì)數(shù)中至少有一個(gè)能整除N,那么N就是合數(shù).如判斷239是質(zhì)數(shù)還是合數(shù)?第一步,;第二步,小于 16的質(zhì)數(shù)有: 23、57、1113,2、3、5、7、11、13 依次去除239;第三步,發(fā)現(xiàn)沒有質(zhì)數(shù)能整除239,所以239是質(zhì)數(shù).

分解質(zhì)因數(shù)就是把一個(gè)合數(shù)分解成若干個(gè)質(zhì)數(shù)的乘積的形式,通過分解質(zhì)因數(shù)可以確定該合數(shù)的約數(shù)的個(gè)數(shù).a, b, c…是不相等的質(zhì)數(shù),m,n,p… 是正整數(shù)),則合數(shù)N共有個(gè)約數(shù)., ,8共有4 個(gè)約數(shù);又如,12共有6個(gè)約數(shù).

請用以上方法解決下列問題:

1)請用“ N判斷619是質(zhì)數(shù)還是合數(shù)?

2)求有18個(gè)約數(shù)的最小自然數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為40cm的正方形硬紙板的四個(gè)角各剪掉一個(gè)同樣大小的正方形,剩余部分折成一個(gè)無蓋的盒子.(紙板的厚度忽略不計(jì)).

1)若該無蓋盒子的底面積為900cm2,求剪掉的正方形的邊長;

2)求折成的無蓋盒子的側(cè)面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次七年級科技小制作比賽,有A、B、C、D四個(gè)班共提供了100件參賽作品,C班提供的參賽作品的獲獎率為50%,其他幾個(gè)班的參賽作品情況及獲獎情況繪制在下列圖①和圖②兩幅尚不完整的統(tǒng)計(jì)圖中.

(1)B班參賽作品有多少件?

(2)請你將圖②的統(tǒng)計(jì)圖補(bǔ)充完整;

(3)通過計(jì)算說明,哪個(gè)班的獲獎率高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河流兩岸PQMN互相平行,CD是河岸PQ上間隔50m的兩個(gè)電線桿,某人在河岸MN上的A處測得∠DAB30°,然后沿河岸走了100m到達(dá)B處,測得∠CBF70°,求河流的寬度(結(jié)果精確到個(gè)位,1.73,sin70°0.94,cos70°0.34,tan70°2.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象經(jīng)過點(diǎn)(﹣1,2),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣2x1<﹣1,0x21,下列結(jié)論:①4a2b+c0;②2ab0;abc0;b2+8a4ac.其中正確的有(  。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD,⊙O△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG,點(diǎn)F、G分別在AD,BC上,連接OGDG,若OG⊥DG,且⊙O的半徑長為1,則下列結(jié)論不成立的是

A.CD+DF=4B.CDDF=23

C.BC+AB=2+4D.BCAB=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,它的外接圓的圓心O在其內(nèi)部,連結(jié)OC,過點(diǎn)AADOC,交BC的延長線于點(diǎn)D

1)求證:ADO的切線;

2)若∠BAD=105°,O的半徑為2,求劣弧AB的長.

查看答案和解析>>

同步練習(xí)冊答案