【題目】如圖1,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,得到A,B的對應(yīng)點C,D,連接AC,BD,CD.
(1)寫出點C,D的坐標(biāo)并求出四邊形ABDC的面積;
(2)在x軸上是否存在一點F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請求出點F的坐標(biāo);若不存在,請說明理由;
(3)如圖2,點P是直線BD上的一個動點,連接PC,PO,當(dāng)點P在直線BD上運動時,請直接寫出∠OPC與∠PCD,∠POB的數(shù)量關(guān)系.
【答案】(1)C(0,2),D(4,2).8;(2)F(1,0)或(5,0);(3)當(dāng)點P在線段BD上運動時:∠OPC=∠PCD+∠POB;當(dāng)點P在BD延長線上運動時:∠OPC=∠POB-∠PCD;當(dāng)點P在DB延長線上運動時:∠OPC=∠PCD-∠POB.
【解析】試題分析:(1)根據(jù)點平移的規(guī)律易得點C的坐標(biāo)為(0,2),點D的坐標(biāo)為(4,2);四邊形ABDC的面積=2×(3+1)=8;
(2)存在.設(shè)點P到AB的距離為h,則S△PAB=×AB×h,根據(jù)S△PAB=S四邊形ABDC,列方程求h的值,確定P點坐標(biāo).
(3)分類討論:當(dāng)點P在線段BD上,作PM∥AB,根據(jù)平行線的性質(zhì)由MP∥AB得∠2=∠POB,由CD∥AB得到CD∥MF,則∠1=∠PCD,所以∠OPC=∠POB+∠PCD;同樣得到當(dāng)點P在線段DB的延長線上,∠OPC=∠PCD-∠POB;當(dāng)點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.
試題解析:(1)依題意,得C(0,2),D(4,2),
∴S四邊形ABDC=AB×OC=4×2=8;
(2)在y軸上是否存在一點P,使S△PAB=S四邊形ABDC.理由如下:
設(shè)點P到AB的距離為h,
S△PAB=×AB×h=2h,
由S△PAB=S四邊形ABDC,得2h=8,
解得h=4,
∴P(0,4)或(0,-4).
(3)當(dāng)點P在線段BD上,作PM∥AB,如圖1,
∵MP∥AB,
∴∠2=∠POB,
∵CD∥AB,
∴CD∥MP,
∴∠1=∠PCD,
∴∠OPC=∠1+∠2=∠POB+∠PCD;
當(dāng)點P在線段DB的延長線上,作PN∥AB,如圖2,
∵PN∥AB,
∴∠NPO=∠POB,
∵CD∥AB,
∴CD∥PN,
∴∠NPC=∠FCD,
∴∠OPC=∠NPC-∠NPO=∠FCD-∠POB;
同樣得到當(dāng)點P在線段BD的延長線上,得到∠OPC=∠POB-∠PCD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直接坐標(biāo)系中,有若干個橫坐標(biāo)分別為整數(shù)的點,其順序按圖中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根據(jù)這個規(guī)律,則第2016個點的橫坐標(biāo)為( 。
A. 44 B. 45 C. 46 D. 47
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算結(jié)果正確的是( )
A.a4+a2=a6
B.(x-y)2=x2-y2
C.x6÷x2=x3
D.(ab)2=a2b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A的坐標(biāo)為(0,2),點B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過點A、C
(1)求反比例函數(shù)和一次函數(shù)的解析式
(2)若點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,請直接寫出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空: 31—30=2×3( ), 32—31=2×3( ), 33—32=2×3( ) , …
(2)探索(1)中式子的規(guī)律,試寫出第n個等式,并說明第n個等式成立;
(3)利用上述規(guī)律計算:30+31+32+33+…+32015+32016= ,
其末位數(shù)字是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com