(2002•天津)如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四個(gè)結(jié)論:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形.請(qǐng)寫出正確結(jié)論的序號(hào)    (把你認(rèn)為正確結(jié)論的序號(hào)都填上)
【答案】分析:由已知條件,首先得到等腰三角形,利用線段的垂直平分線的性質(zhì)進(jìn)一步得到其它結(jié)論.
解答:解:∵AB=AC,AC=AD,
∴AB=AD
∵AC平分∠DAB
∴AC垂直平分BD,①正確;

∴DC=CB,
易知DC>DE,
∴BC>DE,②錯(cuò);

D、C、B可看作是以點(diǎn)A為圓心的圓上,
根據(jù)圓周角定理,得∠DBC=∠DAC,③正確;

當(dāng)△ABC是正三角形時(shí),∠CAB=60°
那么∠DAB=120°,
如圖所示是不可能的,所以錯(cuò)誤.
故①③對(duì).
點(diǎn)評(píng):本題考查了等腰三角形的性質(zhì)及垂直平分線的性質(zhì);利用等腰三角形的三線合一是常用的判斷方法;注意把圖形放入圓中解決可使問題簡化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•天津)如圖,一次函數(shù)的圖象與x軸、y軸分別交于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn),如果A點(diǎn)的坐標(biāo)為(2,0),點(diǎn)C、D分別在第一、第三象限,且OA=OB=AC=BD,試求:
(1)一次函數(shù)的解析式;
(2)反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《四邊形》(04)(解析版) 題型:填空題

(2002•天津)如圖,梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且AC=5cm,BD=12cm,則該梯形的中位線的長等于    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年天津市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•天津)如圖,AB是⊙O的直徑,C是AB延長線上的一點(diǎn),CD是⊙O的切線,D為切點(diǎn),過點(diǎn)B作⊙O的切線交CD于點(diǎn)E.若AB=CD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•天津)如圖,在四邊形ABCD中,對(duì)角線AC與BD相交于點(diǎn)E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四個(gè)結(jié)論:①AC⊥BD;②BC=DE;③∠DBC=∠DAC;④△ABC是正三角形.請(qǐng)寫出正確結(jié)論的序號(hào)    (把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案