(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.

(1)點     (填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
(1)M;(2),當時,S的值最大;(3)存在,點M的坐標為(1,0)或(2,0),理由見試題解析.

試題分析:(1)(BC÷點N的運動速度)與(OA÷點M的運動速度)可知點M能到達終點.
(2)經(jīng)過t秒時可得NB=y,OM﹣2t.根據(jù)∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S與t的函數(shù)關(guān)系式后根據(jù)t的值求出S的最大值.
(3)本題分兩種情況討論(若∠AQM=90°,PQ是等腰Rt△MQA底邊MA上的高;若∠QMA=90°,QM與QP重合)求出t值.
試題解析:(1)點M.
(2)經(jīng)過秒時,NB=,OM=,則CN=,AM=,∵A(4,0),C(0,4),∴AO=CO=4,∵∠AOC=90°,∴∠BCA=∠MAQ=45°,∴QN=CN=,∴PQ=
∴S△AMQ=AM•PQ==.∴,∴,∵,∴當時,S的值最大.
(3)存在.
設經(jīng)過秒時,NB=,OM=,則CN=,AM=,∴∠BCA=∠MAQ=45°.
①若∠AQM=90°,則PQ是等腰Rt△MQA底邊MA上的高,∴PQ是底邊MA的中線,∴PQ=AP=MA,
,∴,∴點M的坐標為(1,0).
②若∠QMA=90°,此時QM與QP重合,∴QM=QP=MA,∴,解得:,∴點M的坐標為(2,0).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

將拋物線向下平移2個單位再向右平移3個單位,所得拋物線的表達式是            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)的圖像經(jīng)過點(0,-4),且當x=2,有最大值—2。求該二次函數(shù)的關(guān)系式:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

甲車在彎路做剎車試驗,收集到的數(shù)據(jù)如下表所示:
速度(千米/時)
0
5
10
15
20
25

剎車距離(米)
0

2

6


(1)請用上表中的各對數(shù)據(jù)作為點的坐標,在如圖所示的坐標系中畫出剎車距離(米)與速度(千米/時)的函數(shù)圖象,并求函數(shù)的解析式;

(2)在一個限速為40千米/時的彎路上,甲、乙兩車相向而行,同時剎車,但還是相撞了.事后測得甲、乙兩車剎車距離分別為12米和10.5米,又知乙車剎車距離(米)與速度(千米/時)滿足函數(shù),請你就兩車速度方面分析相撞原因.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與直線交于點.點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點,

(1)求拋物線的函數(shù)解析式;
(2)若點的橫坐標為2,求的長;
(3)以,為邊構(gòu)造矩形,設點的坐標為,求出之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線C1的頂點為P(1,0),且過點(0,).將拋物線C1向下平移h個單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(如圖),且點A、C關(guān)于y軸對稱,直線AB與x軸的距離是m2(m>0).

(1)求拋物線C1的解析式的一般形式;
(2)當m=2時,求h的值;
(3)若拋物線C1的對稱軸與直線AB交于點E,與拋物線C2交于點F.求證:tan∠EDF﹣tan∠ECP=

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,BC=4,AB=3,點P是BC邊上的動點(點P不與點B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點E.設BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(      )

A、 B、  C、 D、

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,有下列5個結(jié)論:①;②;③;④;⑤,(的實數(shù))其中正確的結(jié)論有(  )
A.2個B.3個C.4個D.5個

查看答案和解析>>

同步練習冊答案