【題目】如圖,在平面直角坐標系中,直線y=kx+b分別與x軸、y軸交于A、B兩點,過點B的拋物線y=﹣ (x﹣2)2+m的頂點P在這條直線上,以AB為邊向下方做正方形ABCD.

(1)當m=2時,k= , b=;當m=﹣1時,k= , b=
(2)根據(jù)(1)中的結(jié)果,用含m的代數(shù)式分別表示k與b,并證明你的結(jié)論;
(3)當正方形ABCD的頂點C落在拋物線的對稱軸上時,求對應的拋物線的函數(shù)關系式;
(4)當正方形ABCD的頂點D落在拋物線上時,直接寫出對應的直線y=kx+b的函數(shù)關系式.

【答案】
(1);1;;﹣2
(2)

解:k= ,b=m﹣1.

證明:∵y=﹣ (x﹣2)2+m,

∴拋物線的頂點坐標為(2,m).

把x=0代入得:y=m﹣1.

∴b=m﹣1.

設直線AB的解析式為y=kx+m﹣1.

將x=2,y=m代入得:2k+m﹣1=m,解得k=


(3)

解:如圖1所示,過點C作CE⊥y軸,垂足為E.

∵ABCD為正方形,

∴AB=BC,∠ABE+∠EBC=90°.

又∵∠ABO+∠BAO=90°,

∴∠BAO=∠EBC.

在△ABO和△BCE中

∴△ABO≌△BCE.

∴EC=OB=2.

∴m﹣1=2.

∴m=3.

∴拋物線的解析式為y=﹣ (x﹣2)2+3


(4)

解:如圖2所示當點B在y軸的正半軸上時,過點D作DE⊥x軸與點E.

由(2)可知:直線AB的解析式為y= x+m﹣1.

當x=0時,y=m﹣1,當y=0時,x=2﹣2m.

∴OA=2m﹣2,OB=m﹣1.

∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,

∴∠BAO=∠ADE.

在△ABO和△DAE中 ,

∴△ABO≌△DAE.

∴AE=OB=1﹣m,ED=AO=2m﹣2.

∴D(1﹣m,2﹣2m).

∵點D在拋物線上,

∴2﹣2m=﹣ (﹣m﹣1)2+m,解得m=9或m=1(舍去).

∴直線的解析式為y= x+9.

如圖3所示:當點B在y軸的負半軸上時,

當x=0時,y=m﹣1,當y=0時,x=2﹣2m.

∴OA=2﹣2m,OB=1﹣m.

∵∠BAO+∠EAD=90°,∠EAD+∠ADE=90°,

∴∠BAO=∠ADE.

在△ABO和△DAE中 ,

∴△ABO≌△DAE.

∴AE=OB,ED=AO.

∴D(3﹣3m,2m﹣2).

∵點D在拋物線上,

∴2m﹣2=﹣ (1﹣3m)2+m,解得m=﹣ 或m=1(舍去).

∴直線的解析式為y= x﹣

綜上所述,直線的解析式為y= x+9或y= x﹣


【解析】解:(1)當m=2時,y=﹣ (x﹣2)2+2,
∴P(2,2).
把x=0代入得:y=1,
∴B(0,1).
設直線AB的解析式為y=kx+1,
將點P的坐標(2,2)代入得:2k+1=2,解得:k=
∴k= ,b=1.
當m=﹣1時,y=﹣ (x﹣2)2﹣1.
∴P(2,﹣1).
把x=0代入得:y=﹣2,
∴B(0,﹣2).
設直線AB的解析式為y=kx﹣2,
將點P的坐標(2,﹣1)代入得:2k﹣2=﹣1,解得:k=
∴k= ,b=﹣2.
所以答案是: ;1; ;﹣2.
【考點精析】認真審題,首先需要了解確定一次函數(shù)的表達式(確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法),還要掌握正方形的性質(zhì)(正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線DP和圓O相切于點C,交直線AE的延長線于點P,過點C作AE的垂線,交AE于點F,交圓O于點B,作平行四邊形ABCD,連接BE,DO,CO.
(1)求證:DA=DC;
(2)求∠P及∠AEB的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請用尺規(guī)作圖作出點P,使得點P在優(yōu)弧CAB上時,△PBC的面積最大,請保留作圖痕跡,并求出△PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),a≠0)的頂點P在直線l上,則稱該拋物線L與直線l具有“”一帶一路關系,此時,拋物線L叫做直線l的“帶線”,直線l叫做拋物線L的“路線”.
(1)求“帶線”L:y=x2﹣2mx+m2+m﹣1(m是常數(shù))的“路線”l的解析式;
(2)若某“帶線”L:y= x2+bx+c的頂點在二次函數(shù)y=x2+4x+1的圖象上,它的“路線”l的解析式為y=2x+4.
①求此“帶線”L的解析式;
②設“帶線”L與“路線”l的另一個交點為Q,點R在PQ之間的“帶線”L上,當點R到“路線”l的距離最大時,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳市政府計劃投資1.4萬億元實施東進戰(zhàn)略.為了解深圳市民對東進戰(zhàn)略的關注情況.某校數(shù)學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:

關注情況

頻數(shù)

頻率

A.高度關注

M

0.1

B.一般關注

100

0.5

C.不關注

30

N

D.不知道

50

0.25


(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為人,m= , n=
(2)根據(jù)以上信息補全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關注東進戰(zhàn)略的深圳市民約有人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,分別以點A,B為圓心,大于 AB長為半徑作弧,兩弧分別交于M,N兩點,過M,N兩點的直線交AC于點E,若AC=8,BC=6,則AE的長為(
A.2
B.3
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y1=ax+b的圖象分別與x,y軸交于點B,A,與反比例函數(shù)y2= 的圖象交于點C,D,CE⊥x軸于點E,tan∠ABO= ,OB=4,OE=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出當x<0且y1<y2時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點P(x﹣4,2x+6)在平面直角坐標系的第二象限內(nèi),那么x的取值范圍在數(shù)軸上可表示為(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案