【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EG∥FH,分別與對角線BD交于點G、H,連接EH,FG.
(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.
【答案】(1)見解析;(2)四邊形EGFH是菱形,理由見解析
【解析】
(1)由平行四邊形的性質(zhì)得出AD∥BC,AD=BC,OB=OD,由平行線的性質(zhì)得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出結(jié)論;
(2)先證明四邊形EGFH是平行四邊形,再由等腰三角形的性質(zhì)得出EF⊥GH,即可得出四邊形EGFH是菱形.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴∠FBH=∠EDG,
∵AE=CF,
∴BF=DE,
∵EG∥FH,
∴∠OHF=∠OGE,
∴∠BHF=∠DGE,
在△BFH和△DEG中,
,
∴BFH≌△DEG(AAS);
(2)解:四邊形EGFH是菱形;理由如下:
連接DF,設EF交BD于O.如圖所示:
由(1)得:BFH≌△DEG,
∴FH=EG,
又∵EG∥FH,
∴四邊形EGFH是平行四邊形,
∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,
∴△EDO≌△FBO,
∴OB=OD,
∵BF=DF,OB=OD,
∴EF⊥BD,
∴EF⊥GH,
∴四邊形EGFH是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】費爾茲獎是國際上享有崇高榮譽的一個數(shù)學獎項,每4年評選一次,在國際數(shù)學家大會上頒給有卓越貢獻的年齡不超過40歲的年輕數(shù)學家,美籍華人丘成桐1982年獲得費爾茲獎.為了讓學生了解費爾茲獎得主的年齡情況,我們查取了截止到2018年60名費爾茲獎得主獲獎時的年齡數(shù)據(jù),并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.
a.截止到2018年費爾茲獎得主獲獎時的年齡數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成5組,各組是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):
b.如圖2,在a的基礎上,畫出扇形統(tǒng)計圖;
c.截止到2018年費爾茲獎得主獲獎時的年齡在34≤x<37這一組的數(shù)據(jù)是:
36 | 35 | 34 | 35 | 35 | 34 | 34 | 35 | 36 | 36 | 36 | 36 | 34 | 35 |
d.截止到2018年時費爾茲獎得主獲獎時的年齡的平均數(shù)、中位數(shù)、眾數(shù)如下:
年份 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2018 | 35.58 | m | 37,38 |
根據(jù)以上信息,回答下列問題:
(1)依據(jù)題意,補全頻數(shù)直方圖;
(2)31≤x<34這組的圓心角度數(shù)是度,并補全扇形統(tǒng)計圖;
(3)統(tǒng)計表中中位數(shù)m的值是;
(4)根據(jù)以上統(tǒng)計圖表試描述費爾茲獎得主獲獎時的年齡分布特征.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為5,EF是長為8的弦,OG⊥EF于點G,點A在GO的延長線上,且AO=13.弦EF從圖1的位置開始繞點O逆時針旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持OG⊥EF,如圖2.
[發(fā)現(xiàn)]在旋轉(zhuǎn)過程中,
(1)AG的最小值是 ,最大值是 .
(2)當EF∥AO時,旋轉(zhuǎn)角α= .
[探究]若EF繞點O逆時針旋轉(zhuǎn)120°,如圖3,求AG的長.
[拓展]如圖4,當AE切⊙O于點E,AG交EO于點C,GH⊥AE于H.
(1)求AE的長.
(2)此時EH= ,EC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年五一期間,重慶洪崖洞民俗風情街景區(qū)受熱棒,在全國最熱門景點中排名第二.許多游客慕名來渝到網(wǎng)紅景點打卡,用手機拍攝夜景,記錄現(xiàn)實中的“千與千尋”,手機充電寶因此熱銷.某手機配件店有A型(5000毫安)和B型(10000毫安)兩種品牌的充電寶出售
(1)已知A型充電寶進價40元,售價60元,B型充電寶進價60元,要使B型充電寶的利潤率不低于A型充電寶的利潤率,則B型充電寶的售價至少是多少元(利潤率=×100%)
(2)5月1日,A型充電寶的進價、售價,以及B型充電寶的進價與(1)中相同,B型充電寶按(1)中最低售價出售,其中A型充電寶銷量占5月1日總銷量的60%.5月2號,A型充電寶進價不變,但銷量比5月1號減少a%,售價提高20元,B型充電寶進價上漲a%,銷量增加了a%,售價在5月1日售價的基礎上提高,結(jié)果5月2號的銷售利潤剛好是5月1號的銷售利潤的2倍,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是CD的中點,將△BCE沿BE折疊后得到△BEF、且點F在矩形ABCD的內(nèi)部,將BF延長交AD于點G.若,則=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的頂點都在坐標軸上,若AD∥BC,△ACD與△BCD的面積分別為10和20,若雙曲線恰好經(jīng)過邊AB的四等分點E(BE<AE),則k的值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+mx+n與x軸相交于點A、B兩點,過點B的直線y=x+b交拋物線于另一點C(-5,6),點D是線段BC上的一個動點(點D與點B、C不重合),作DE∥AC,交該拋物線于點E,
(1)求m,n,b的值;
(2)求tan∠ACB;
(3)探究在點D運動過程中,是否存在∠DEA=45°,若存在,則求此時線段AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在傳箴言活動中,某班團支部對該班全體團員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進行統(tǒng)計,并繪制成了如圖所示的兩幅統(tǒng)計圖
(1)將條形統(tǒng)計圖補充完整;
(2)該班團員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是________;
(3)如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學,現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加總結(jié)會,請你用列表或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)和一次函數(shù),若函數(shù)的圖象始終在函數(shù)的圖象的一側(cè),則常數(shù)的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com