【題目】已知A、B兩地相距50米,小烏龜從A地出發(fā)前往B地,第一次它前進(jìn)1米,第二次它后退2米,第三次再前進(jìn)3米,第四次又向后退4米…,按此規(guī)律行進(jìn),如果A地在數(shù)軸上表示的數(shù)為﹣16.
(1)求出B地在數(shù)軸上表示的數(shù);
(2)若B地在原點(diǎn)的右側(cè),經(jīng)過第七次行進(jìn)后小烏龜?shù)竭_(dá)點(diǎn)P,第八次行進(jìn)后到達(dá)點(diǎn)Q,點(diǎn)P、點(diǎn)Q到A地的距離相等嗎?說明理由?
(3)若B地在原點(diǎn)的右側(cè),那么經(jīng)過100次行進(jìn)后,小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是多少?
【答案】(1)34或﹣66;(2)點(diǎn)P、點(diǎn)Q到A地的距離相等,理由見解析;(3)小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是100米.
【解析】
(1)在數(shù)軸上表示-16的點(diǎn)移動(dòng)50個(gè)單位后,所得的點(diǎn)表示為-16-50=-66或-16+50=34;
(2)數(shù)軸上點(diǎn)的移動(dòng)規(guī)律是“左減右加”.依據(jù)規(guī)律計(jì)算即可;
(3)根據(jù)100為偶數(shù)可得在數(shù)軸上表示的數(shù),再根據(jù)兩點(diǎn)間的距離公式即可求解.
(1)﹣16+50=34,﹣16﹣50=﹣66.
答:B地在數(shù)軸上表示的數(shù)是34或﹣66.
(2)第七次行進(jìn)后:,
第八次行進(jìn)后:,
因?yàn)辄c(diǎn)P、Q與A點(diǎn)的距離都是4米,
所以點(diǎn)P、點(diǎn)Q到A地的距離相等;
(3)當(dāng)n為100時(shí),它在數(shù)軸上表示的數(shù)為:
,
(米).
答:小烏龜?shù)竭_(dá)的點(diǎn)與點(diǎn)B之間的距離是100米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市自來水公司為鼓勵(lì)居民節(jié)約用水,采取按月用水量分段收費(fèi)辦法,若某戶居民應(yīng)交交費(fèi)(元)與用水量(噸)的函數(shù)關(guān)系如圖所示。
(1)分別寫出當(dāng)和時(shí),與的函數(shù)關(guān)系式;
(2)若某用戶該月用水21噸,則應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長畫Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長即為.
請?jiān)谙旅娴臄?shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn)M,并描述第三步的畫圖步驟:_______________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,∠A=∠F,求證:∠C=∠D.請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
證明:∵∠1=∠2(已知)∠1=∠3(_______)
∴∠2=∠3(等量代換)
∴BD∥_____(_______)
∴∠4=_____(_______)
又∵∠A=∠F(已知)
∴AC∥_____(_______)
∴∠4=_____(_______)
∴∠C=∠D(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長方形運(yùn)動(dòng)場被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.
(1)列式表示每個(gè)區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個(gè)長方形運(yùn)動(dòng)場的周長,并將式子化簡;
(3)如果, ,求整個(gè)長方形運(yùn)動(dòng)場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片向右上方翻折,使得點(diǎn)和點(diǎn)重合,畫出折痕以及翻折后的圖形,折痕與長方形的邊、分別交于點(diǎn)、,判斷重疊部分圖形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,EF∥CD,DE∥BC.
(1)求證:AF:FD=AD:DB;
(2)若AB=15,AD:BD=2:1,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知連接A.B兩地之間的公路長為600千米,甲開車從A地出發(fā)沿著此公路以100千米/小時(shí)的速度前往B地,乙騎自行車從B地出發(fā)沿此公路勻速前往A地.已知乙比甲晚出發(fā)1小時(shí),乙出發(fā)4小時(shí)后與甲第一次相遇,當(dāng)甲到達(dá)B地侯立即原路原速返回.若乙第二次與甲相遇時(shí)乙共騎行了m千米,則m=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.
(1)如圖①,當(dāng)點(diǎn)O在AC上時(shí),試說明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時(shí),求CP長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com