【題目】近兩年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果顯示,支付方式有:A微信.B支付寶.C銀行卡.D其他.該小組選取了某一超市一天之內(nèi)購買者的支付方式進(jìn)行統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名購買者?

2)補(bǔ)全條形統(tǒng)計(jì)圖:A微信支付方式所在扇形的圓心角為   度;

3)若該超市這一天內(nèi)有2000名購買者,請你估計(jì)B種支付方式的購買者有多少人?

【答案】1200(人); 2)圖見解析;108;(3560人.

【解析】

1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購買者的人數(shù);
2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得選擇AD的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整,求得在扇形統(tǒng)計(jì)圖中A種支付方式所對應(yīng)的圓心角的度數(shù);
3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以計(jì)算出使用AB兩種支付方式的購買者共有多少名.

解:(1)一共調(diào)查的購買者人數(shù)為:56÷28%200(人)

答:本次調(diào)查中,一共調(diào)查了200名購買者;

2D類人數(shù)為:200×20%40(人),

A類人數(shù)為:20056444060

補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:

A微信支付方式所在扇形的圓心角為:360°× ×100%108°,

故答案為:108

3B種支付方式的購買者:2000×28%560,

答:B種支付方式的購買者有560人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃用3 800元購進(jìn)節(jié)能燈120只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(/)

售價(jià)(/)

甲型

25

30

乙型

45

60

(1)求甲、乙兩種節(jié)能燈各進(jìn)多少只?

(2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,點(diǎn)A1,8),B16),C76).

(1)請直接寫出點(diǎn)D的坐標(biāo);

(2)連接線段OBOD,BD,請求出△OBD的面積;

(3)若長方形ABCD以每秒1個單位長度的速度向下運(yùn)動,設(shè)運(yùn)動的時間為t秒,是否存在某一時刻,使△OBD的面積與長方形ABCD的面積相等?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCDEG、EM、FM分別平分∠AEFBEF,EFD,則下列結(jié)論正確的有(  )

①∠DFEAEF;②∠EMF=90°;EGFM;④∠AEFEGC.

A. 1B. 2

C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD平分∠BACBC于點(diǎn)D,點(diǎn)FBA的延長線上,點(diǎn)E在線段CD上,EFAC相交于點(diǎn)G,BDA+CEG=180°.

(1)ADEF平行嗎?請說明理由;

(2)若點(diǎn)HFE的延長線上,且∠EDH=C,則∠F與∠H相等嗎,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明用12元買軟面筆記本,小麗用21元買硬面筆記本.

(1)已知每本硬面筆記本比軟面筆記本貴1.2元,小明和小麗能買到相同數(shù)量的筆記本嗎?

(2)已知每本硬面筆記本比軟面筆記本貴a元,是否存在正整數(shù)a,使得每本硬面筆記本、軟面筆記本的價(jià)格都是正整數(shù),并且小明和小麗能買到相同數(shù)量的筆記本?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.

甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.

乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4.

(1)求如圖所示的yx的函數(shù)解析式;(不要求寫取值范圍)

(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;

(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.

①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對應(yīng)),求點(diǎn)M的坐標(biāo);

②若⊙M的半徑為,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新知:對角線垂直的四邊形兩組對邊的平方和相等

感知與認(rèn)證:如圖12,3中,四邊形ABCDO,如圖1,ACBD相互平分,如圖2,AC平分BD,結(jié)論顯然成立.

認(rèn)知證明:(1)請你證明如圖3中有成立。

發(fā)現(xiàn)應(yīng)用:(2)如圖4,若AF,BE是三角形ABC的中線,垂足為P

已知:,,AB的長

拓展應(yīng)用:(3)如圖5,在平行四邊形ABCD中,點(diǎn)E,F,G分別是AD,BC,CD的中點(diǎn),,,.AF的長.

查看答案和解析>>

同步練習(xí)冊答案