【題目】設(shè)[x]表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),則[]+[]+[]+…+[]=( 。

A. 132 B. 146 C. 161 D. 666

【答案】B

【解析】分析:先計(jì)算出1.52,2.52,3.52,4.52,5.52,即可得出[]+[]+[]+…+[]中有2個(gè)1,4個(gè)2,6個(gè)3,8個(gè)4,10個(gè)5,6個(gè)6,從而可得出答案.

詳解:1.52=2.25,可得出有2個(gè)1;

2.52=6.25,可得出有4個(gè)2;

3.52=12.25,可得出有6個(gè)3;

4.52=20.25,可得出有8個(gè)4;

5.52=30.25,可得出有10個(gè)5;

則剩余6個(gè)數(shù)全為6.

[]+[]+[]+…+[]=1×2+2×4+3×6+4×8+5×10+6×6=146.

故選:B.

點(diǎn)睛本題考查了估算無(wú)理數(shù)的大小.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化妝品店老板到廠家選購(gòu)A、B兩種品牌的化妝品,若購(gòu)進(jìn)A品牌的化妝品5套,B品牌的化妝品6套,需要950元;若購(gòu)進(jìn)A品牌的化妝品3套,B品牌的化妝品2套,需要450元.

(1)求A、B兩種品牌的化妝品每套進(jìn)價(jià)分別為多少元?

(2)若銷售1A品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場(chǎng)需求,化妝品店老板決定,購(gòu)進(jìn)B品牌化妝品的數(shù)量比購(gòu)進(jìn)A品牌化妝品數(shù)量的2倍還多4套,且B品牌化妝品最多可購(gòu)進(jìn)40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問:有哪幾種進(jìn)貨方案?如何進(jìn)貨能使成本最省?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的A、B兩個(gè)頂點(diǎn)在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面積SABC=15,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).

(1)求此拋物線的函數(shù)表達(dá)式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)B的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH.則在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)在拋物線上是否存在異于B、C的點(diǎn)M,使△MBC中BC邊上的高為 ?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算題。
(1)計(jì)算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你列舉一個(gè)可以通過旋轉(zhuǎn)而得到的幾何體:________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校在“國(guó)學(xué)經(jīng)典”中新建了一座吳玉章雕塑,小林站在距離雕塑3米的A處自B點(diǎn)看雕塑頭頂D的仰角為45°,看雕塑底部C的仰角為30°,求塑像CD的高度.(最后結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCEBC上的一點(diǎn),EC=2BE,點(diǎn)DAC的中點(diǎn),設(shè)ABC,ADF,BEF的面積分別為=24,則=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算.

(1)y=2y﹣1

(2)5(x﹣5)+2(x﹣12)=0

(3)y﹣=1﹣

(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x)

(5)

(6)

查看答案和解析>>

同步練習(xí)冊(cè)答案