【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點,且為雙曲線上的一點,為坐標平面上一動點,垂直于軸,垂直于軸,垂足分別是、.
(1)寫出正比例函數(shù)和反比例函數(shù)的關系式.
(2)當點在直線上運動時,直線上是否存在這樣的點,使得與的面積相等?如果存在,請求出點的坐標;如果不存在,請說明理由.
【答案】(1)正比例函數(shù)的解析式為,反比例函數(shù)的解析式為;
(2)在直線上存在這樣的點或,使得與面積相等.
【解析】
(1)用待定系數(shù)法進行求解,即可得到正比例函數(shù)和反比例函數(shù)的關系式;
(2)當點Q在直線MO上運動時,假設在直線MO上存在這樣的點Q(x,x),使得△OBQ與△OAP面積相等,則B(0,x).根據(jù)三角形的面積公式列出關于x的方程,解方程即可.
(1)設反比例函數(shù)的解析式為,正比例函數(shù)的解析式為.
∵正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點,∴,. ∴,.
∴正比例函數(shù)的解析式為,反比例函數(shù)的解析式為.
(2)當點在直線上運動時,假設在直線上存在這一的點,使得與面積相等,則.
∵,∴,解得.
當時,. 當時,.
故在直線上存在這樣的點或,使得與面積相等.
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:如圖 1,在和中,,連接 交的延長線于點.則的值是____________.
問題解決:如圖 2,在問題背景的條件下,將繞點在平面內旋轉,點始終在的外部,所在直線交于點,若,當點與點重合時,的長是____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形OABC中,OA=4,OC=3,分別以OC、OA所在的直線為x軸、y軸,建立如圖所示的坐標系,連接OB,反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OB的中點D,并與矩形的兩邊交于點E和點F,直線l:y=kx+b經(jīng)過點E和點F.
(1)寫出中點D的坐標 ,并求出反比例函數(shù)的解析式;
(2)連接OE、OF,求△OEF的面積;
(3)如圖②,將線段OB繞點O順時針旋轉一定角度,使得點B的對應點H恰好落在x軸的正半軸上,連接BH,作OM⊥BH,點N為線段OM上的一個動點,求HN+ON的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于點A(1, 0),B(-7, 0),頂點D坐標為(-3,),點C在y軸的正半軸上,CD交x軸于點F,△CAD繞點C順時針旋轉得到△CFE,點A恰好旋轉到點F,連接BE.過頂點D作DD1⊥x軸于點D1
(1)求拋物線的表達式
(2)求證:四邊形BFCE是平行四邊形.
(3)點P是拋物線上一動點,當P在B點左側時,過點P作PM⊥x軸,點M為垂足,請問是否存在P點使得△PAM與△DD1A相似,如果存在,請寫出點P的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線(,,是常數(shù),)經(jīng)過點A(,)和點B (,),且拋物線的對稱軸在軸的左側. 下列結論: ① ; ② 方程 有兩個不等的實數(shù)根; ③. 其中,正確結論的個數(shù)是( ).
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個種子店都銷售“黃金1號”玉米種子.在甲店,該種子的價格為 5元 / kg,如果一次購買2 kg 以上的種子,超過 2 kg 部分的種子的價格打8折.在乙店,不論一次購買該種子的數(shù)量是多少,價格均為4.5 元 / kg.
(1)根據(jù)題意,填寫下表:
(2)設一次購買種子的數(shù)量為 kg(). 在甲店購買的付款金額記為元,在乙店購買的付款金額為元,分別求,關于的函數(shù)解析式;
(3) 若在同一店中一次購買種子的付款金額是36元,則最多可購買種子______ kg.若在同一店中一次購買種子10 kg,則最少付款金額是________元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線:與軸、軸交于、兩點,與反比例函數(shù)的圖像交于點,且.
(1)求反比例函數(shù)的解析式;
(2)點是直線上一點,過點作軸的平行線交反比例函數(shù)和的圖像于,兩點,連,,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點為直線上一點,點為延長線上一點,且,連接.
求證:;
當時,求的度數(shù);
點是的外心,當點在直線上運動,且點恰好在內部或邊上時,直接寫出點運動的路徑的長,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com