(2006•廈門)已知等邊△ABC,分別以AB、BC、CA為邊向外作等邊三角形ABD,等邊三角形BCE,等邊三角形ACF,則下列結(jié)論中不正確的是( )
A.BC2=AC2+BC2-AC•BC
B.△ABC與△DEF的重心不重合
C.B,D,F(xiàn)三點不共線
D.S△DEF≠S△ABC
【答案】分析:根據(jù)等邊三角形的性質(zhì),對四選項逐個進行判斷即可求解.
解答:解:A、化簡化得AC=BC,正確;
B、DEF是等邊三角形,且等邊△ABC的各頂點是△DEF各邊的中點,等邊△ABC可看作是△DEF的內(nèi)接正三角形,所以△ABC與△DEF的重心重合,錯誤;
C、根據(jù)題意,可得出點D、B、E在同一直線上,點D、A、F在同一直線上,點E、C、F在同一直線上,正確;
D、S△DEF=4S△ABC,正確.
故選B
點評:主要考查等邊三角形的性質(zhì),三心合一.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•廈門)已知拋物線y=ax2+b(a>0,b>0),函數(shù)y=b|x|
問:(1)如圖,當拋物線y=ax2+b與函數(shù)y=b|x|相切于AB兩點時,a、b滿足的關(guān)系;
(2)滿足(1)題條件,則三角形AOB的面積為多少?
(3)滿足條件(2),則三角形AOB的內(nèi)心與拋物線的最低點間的距離為多少?
(4)若不等式ax2+b>b|x|在實數(shù)范圍內(nèi)恒成立,則a、b滿足什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•廈門)已知P(m,a)是拋物線y=ax2上的點,且點P在第一象限.
(1)求m的值
(2)直線y=kx+b過點P,交x軸的正半軸于點A,交拋物線于另一點M.
①當b=2a時,∠OPA=90°是否成立?如果成立,請證明;如果不成立,舉出一個反例說明;
②當b=4時,記△MOA的面積為S,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年福建省廈門市中考數(shù)學試卷(課標B卷)(解析版) 題型:解答題

(2006•廈門)已知拋物線y=ax2+b(a>0,b>0),函數(shù)y=b|x|
問:(1)如圖,當拋物線y=ax2+b與函數(shù)y=b|x|相切于AB兩點時,a、b滿足的關(guān)系;
(2)滿足(1)題條件,則三角形AOB的面積為多少?
(3)滿足條件(2),則三角形AOB的內(nèi)心與拋物線的最低點間的距離為多少?
(4)若不等式ax2+b>b|x|在實數(shù)范圍內(nèi)恒成立,則a、b滿足什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學 來源:2006年福建省廈門市中考數(shù)學試卷(課標A卷)(解析版) 題型:解答題

(2006•廈門)已知P(m,a)是拋物線y=ax2上的點,且點P在第一象限.
(1)求m的值
(2)直線y=kx+b過點P,交x軸的正半軸于點A,交拋物線于另一點M.
①當b=2a時,∠OPA=90°是否成立?如果成立,請證明;如果不成立,舉出一個反例說明;
②當b=4時,記△MOA的面積為S,求的最大值.

查看答案和解析>>

同步練習冊答案