【題目】如圖,D為等邊△ABC的邊AC上一點(diǎn),E為直線(xiàn)AB上一點(diǎn),CD=BE.
(1)如圖1,求證;AD=DE;
(2)如圖2,DE交CB于點(diǎn)P.
①若DE⊥AC,PC=6,求BP的長(zhǎng);
②猜想PD與PE之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)證明見(jiàn)解析;(2)①BP=3;②PD=PE,理由見(jiàn)解析.
【解析】
(1)只要證明△ADE是等邊三角形即可;
(2)①利用直角三角形30度角性質(zhì)即可解決問(wèn)題;②過(guò)點(diǎn)D作DQ∥AB交BC于點(diǎn)Q,只要證明△CDQ是等邊三角形,△DQP≌△EBP(AAS)即可解決問(wèn)題.
(1)∵△ABC是等邊三角形,
∴AB=AC,∠A=60°,
∵CD=BE,
∴AB-BE=AC-CD,即AD=AE,
∵∠A=60°,
∴△ADE是等邊三角形.
∴AD=DE.
(2)①∵DE⊥AC,∠A=60°,
∴∠E=30°,
∵∠ABC=60°,
∴∠E=∠BPE=30°=∠CPD,
∴BP=BE,CD=PC=3,
∵CD=BE,
∴BP=BE=3.
②PD=PE,理由如下:
如圖2,過(guò)點(diǎn)D作DQ∥AB,交BC于點(diǎn)Q,
∴∠CDQ=∠A=60°,∠CQD=∠ABC=60°,∠DQP=∠EBP,
∴△DCQ是等邊三角形,
∴DQ=CD=BE.
∵∠DPQ=∠EPB,∠DQP=∠EBP,
∴△DQP≌△EBP,
∴PD=PE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書(shū)活動(dòng),為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對(duì)他們的捐書(shū)量進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果共有4本、5本、6本、7本、8本五類(lèi),分別用A、B、C、D、E表示,根據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計(jì)圖,由圖中給出的信息解答下列問(wèn)題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這30名職工捐書(shū)本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)估計(jì)該單位750名職工共捐書(shū)多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某臺(tái)階的一部分,如果A點(diǎn)的坐標(biāo)為(0,0),B點(diǎn)的坐標(biāo)為(1,1),
(1)請(qǐng)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出其余各點(diǎn)的坐標(biāo);
(2)如果臺(tái)階有10級(jí),請(qǐng)你求出該臺(tái)階的長(zhǎng)度和高度;
(3)若這10級(jí)臺(tái)階的寬度都是2m,單位長(zhǎng)度為1m,現(xiàn)要將這些臺(tái)階鋪上地毯,需要多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知直線(xiàn)y=﹣ x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)的坐標(biāo)為(﹣2,0).
(1)求證:直線(xiàn)AB⊥AC;
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)l的解析式和對(duì)稱(chēng)軸;
(3)在直線(xiàn)AB上方的拋物線(xiàn)l上,是否存在一點(diǎn)P,使直線(xiàn)AB平分∠PBC?
若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片ABCD中,對(duì)角線(xiàn)AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合,展開(kāi)后折痕DE分別交AB、AC于點(diǎn)E、G,連結(jié)GF,給出下列結(jié)論:
①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4
其中正確有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題。
(1)先化簡(jiǎn),再求值:a(a﹣2b)+(a+b)2 , 其中a=﹣1,b= .
(2)解方程: = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)、兩種新型節(jié)能臺(tái)燈共盞,這兩種臺(tái)燈的進(jìn)價(jià)、售價(jià)如表所示:
()若商場(chǎng)預(yù)計(jì)進(jìn)貨款為元,則這兩種臺(tái)燈各購(gòu)進(jìn)多少盞?
()若商場(chǎng)規(guī)定型臺(tái)燈的進(jìn)貨數(shù)量不超過(guò)型臺(tái)燈數(shù)量的倍,應(yīng)怎樣進(jìn)貨才能使商場(chǎng)在銷(xiāo)售完這批臺(tái)燈時(shí)獲利最多?此時(shí)利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校開(kāi)展課外體育活動(dòng),決定開(kāi)展:籃球、乒乓球、踢毽子、跑步四種活動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目(每人只選取一種).隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪成如下統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答下列問(wèn)題.
(1)樣本中最喜歡籃球項(xiàng)目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的圓心角度數(shù)是 度;
(2)請(qǐng)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校有學(xué)生1000人,請(qǐng)根據(jù)樣本估計(jì)全校最喜歡踢毽子的學(xué)生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,BD是△ABC的中線(xiàn),CE⊥BD于點(diǎn)E,AF⊥BD,交BD的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)試探索BE,BF和BD三者之間的數(shù)量關(guān)系,并加以證明;
(2)連接AE,CF,求證:AE∥CF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com