【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠ACD=120°.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為2,求圖中陰影部分的面積.

【答案】(1)證明見解析;(2)

【解析】

試題分析:(1)連接OC.只需證明∠OCD=90°.根據(jù)等腰三角形的性質(zhì)即可證明;

(2)陰影部分的面積即為直角三角形OCD的面積減去扇形COB的面積.

試題解析:(1)證明:連接OC.

AC=CD,∠ACD=120°,∠A=∠D=30°.OA=OC,∠2=∠A=30°,∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,CD是⊙O的切線.

(2)解:∠A=30°,∠1=2∠A=60°,S扇形BOC==.在Rt△OCD中,=tan60°,CD==OCCD==,圖中陰影部分的面積為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x﹣4)(x+8)=x2+mx+n,則m、n的值分別為(
A.4,32
B.4,﹣32
C.﹣4,32
D.﹣4,﹣32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過△ABC的三個頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線AC下方拋物線上的動點(diǎn).

(1)求拋物線的解析式;

(2)過點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時,求點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時,在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=x2向右平移1個單位長度,再向上平移2個單位長度所得的拋物線解析式為(
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y=(x>0)上,過點(diǎn)A作AC⊥x軸,垂足為C,線段OA的垂直平分線BD交x軸于點(diǎn)B,△ABC的周長為4,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)F在邊BC上,且AF=AD,過點(diǎn)D作DE⊥AF,垂足為點(diǎn)E

(1)求證:DE=AB;

(2)以A為圓心,AB長為半徑作圓弧交AF于點(diǎn)G,若BF=FC=1,求扇形ABG的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系XOY中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點(diǎn),不寫畫法);
(2)直接寫出A′,B′,C′三點(diǎn)的坐標(biāo):A′( ),B′( ),C′(
(3)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以對角線AC為一邊作菱形AEFC,則∠FAB等于(

A.22.5°
B.45°
C.30°
D.135°

查看答案和解析>>

同步練習(xí)冊答案