【題目】某小區(qū)新建成的住宅樓主體工程已經(jīng)竣工,只剩下樓體外表需貼瓷磚,已知樓體外表的面積為

1)寫出每塊瓷磚的面積與所需的瓷磚塊數(shù)(塊)之間的函數(shù)關(guān)系式;

2)為了使住宅樓的外觀更漂亮,開發(fā)商決定采用灰、白、藍(lán)三種顏色的瓷磚,每塊瓷磚的面積都是,灰、白、藍(lán)瓷磚使用比例是,則需要三種瓷磚各多少塊?

【答案】1;(2)需要灰瓷磚125000塊,白瓷磚250000塊、藍(lán)瓷磚為250000

【解析】

1)根據(jù)每塊瓷磚的面積S=樓體外表的總面積÷所需的瓷磚塊數(shù)n塊,求出即可;

2)設(shè)用灰瓷磚x塊,則白瓷磚、藍(lán)瓷磚分別為2x塊、2x塊,再用n=625000求出即可.

解;(1)∵每塊瓷磚的面積樓體外表的總面積÷所需的瓷磚塊數(shù)塊,

由此可得出的函數(shù)關(guān)系式是:

2)當(dāng)時(shí),

設(shè)用灰瓷磚塊,則白瓷磚、藍(lán)瓷磚分別為塊、塊,

依據(jù)題意得出:,

解得:

∴需要灰瓷磚125000塊,白瓷磚250000塊、藍(lán)瓷磚為250000塊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張相同的卡片分別寫著數(shù)字﹣1、2、﹣3、4,將卡片的背面朝上,并洗勻.從中任意抽取1張,并將所取卡片上的數(shù)字記作一次函數(shù)y=kx+b中的k;再?gòu)挠嘞碌目ㄆ腥我獬槿?/span>1張,并將所取卡片上的數(shù)字記作一次函數(shù)y=kx+b中的b.則這個(gè)一次函數(shù)的圖象恰好經(jīng)過第一、二、四象限的概率是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于A(﹣2,1),B1,n)兩點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出使一次函數(shù)的值>反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線經(jīng)過AC兩點(diǎn),與AB邊交于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時(shí),S取得最大值;

當(dāng)S最大時(shí),在拋物線的對(duì)稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請(qǐng)直接寫出所有符合條件的F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,∠OAB=30°,反比例函數(shù)的圖象過點(diǎn),反比例函數(shù)的圖象過點(diǎn)A

1)求的值.

2)過點(diǎn)BBCx軸,與雙曲線交于點(diǎn)C,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)y=﹣(xm2m+1m為常數(shù)),下列描述錯(cuò)誤的是( 。

A.當(dāng)m2時(shí),函數(shù)的最大值是﹣1

B.函數(shù)圖象的頂點(diǎn)始終在直線y=﹣x+1的圖象上

C.當(dāng)﹣1x2時(shí),yx的增大而增大,則m的取值范圍為m≤2

D.當(dāng)m0時(shí),函數(shù)圖象的頂點(diǎn)及函數(shù)圖象與x軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+x+c與直線交于點(diǎn)A和點(diǎn)E,點(diǎn)Ax軸上.拋物線yax2+x+cx軸另一個(gè)交點(diǎn)為點(diǎn)B,與y軸交于點(diǎn)C0,),直線y軸交于點(diǎn)D

1)求點(diǎn)D的坐標(biāo)和拋物線yax2+x+c的函數(shù)表達(dá)式;

2)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)沿射線AE以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)E運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,連接AC、CQ、PQ

①當(dāng)△APQ是以AP為底邊的等腰三角形時(shí),求t的值;

②在點(diǎn)P、Q運(yùn)動(dòng)過程中,△ACQ的面積記為S1,△APQ的面積記為S2,SS1+S2,當(dāng)S時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知An,2),B1,4)是一次函數(shù)ykx+b和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求AOB的面積.

3)直接寫出kx+b時(shí),的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市正在開展食品安全城市創(chuàng)建活動(dòng),為了解學(xué)生對(duì)食品安全知識(shí)的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解四類分別進(jìn)行統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了   名學(xué)生;

(2)扇形統(tǒng)計(jì)圖中D所在扇形的圓心角為   ;

(3)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;

(4)若該校共有800名學(xué)生,請(qǐng)你估計(jì)對(duì)食品安全知識(shí)非常了解的學(xué)生的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案