【題目】樹(shù)人學(xué)校實(shí)施新課程改革以來(lái),學(xué)生的學(xué)習(xí)能力有了很大提高.周老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對(duì)該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(lèi)(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查中,周老師一共調(diào)查了________名學(xué)生,扇形統(tǒng)計(jì)圖中“較差”部分的圓心角是__________;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果樹(shù)人學(xué)校共有6000名學(xué)生,“特別好”的有多少人?
【答案】(1)20,36°;(2)詳見(jiàn)解析;(3)900.
【解析】試題分析:(1)用特別好的學(xué)生人數(shù)除以特別好的學(xué)生人數(shù)所占的百分比即可得這次調(diào)查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖求得較差學(xué)生所占的百分比,用360°乘以較差學(xué)生所占的百分比即可;(2)求得一般和較差學(xué)生的人數(shù),再求得一般學(xué)生中的女生人數(shù)和較差學(xué)生中的男生人數(shù),補(bǔ)全統(tǒng)計(jì)圖即可;(3)用總?cè)藬?shù)乘以特別好學(xué)生所占的百分比即可.
試題解析:
(1)(2+1)÷15%=20(人);
360°×(1-50%-25%-15%)=36°;
故答案為:20,36°;
(2)20×25%=5(人),5-2=3人;
20×(1-50%-25%-15%)=2(人),2-1=1人;
補(bǔ)圖如下:
(3)6000×15%=900(人),
答:“特別好”的有900人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=x+3與x軸、y軸分別相交于A、C兩點(diǎn),過(guò)點(diǎn)B(6,0),E(0,﹣6)的直線(xiàn)上有一點(diǎn)P,滿(mǎn)足∠PCA=135°.
(1)求證:四邊形ACPB是平行四邊形;
(2)求直線(xiàn)BE的解析式及點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人民生活水平的提高,汽車(chē)進(jìn)入家庭的越來(lái)越多.我市某小區(qū)在2007年底擁有家庭轎車(chē)64輛,到了2009年底,家庭轎車(chē)數(shù)為100輛.
(1)若平均每年轎車(chē)數(shù)的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率.
(2)為了緩解停車(chē)矛盾,多增加一些車(chē)位,該小區(qū)決定投資15萬(wàn)元,再造一些停車(chē)位.據(jù)測(cè)算,建造一個(gè)室內(nèi)停車(chē)位,需5000元;建造一個(gè)室外停車(chē)位,需1000元.按實(shí)際情況考慮,計(jì)劃室外停車(chē)位數(shù)不少于室內(nèi)車(chē)位的2倍,又不能超過(guò)室內(nèi)車(chē)位的2.5倍.問(wèn),該小區(qū)有哪幾種建造方案?應(yīng)選擇哪種方案最合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),直線(xiàn)y=x+2分別與x軸、y軸交于點(diǎn)A、C.拋物線(xiàn)y=﹣+bx+c經(jīng)過(guò)點(diǎn)A與點(diǎn)C,且與x軸的另一個(gè)交點(diǎn)為點(diǎn)B.點(diǎn)D在該拋物線(xiàn)上,且位于直線(xiàn)AC的上方.
(1)求上述拋物線(xiàn)的表達(dá)式;
(2)聯(lián)結(jié)BC、BD,且BD交AC于點(diǎn)E,如果△ABE的面積與△ABC的面積之比為4:5,求∠DBA的余切值;
(3)過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F,聯(lián)結(jié)CD.若△CFD與△AOC相似,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到AB′C′D′,如果AB=1,點(diǎn)C與C′的距離為( 。
A. B. ﹣ C. 1 D. ﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是邊AD上兩動(dòng)點(diǎn),且AE=DF,BE與對(duì)角線(xiàn)AC交于點(diǎn)G,聯(lián)結(jié)DG,DG交CF于點(diǎn)H.
(1)求證:∠ADG=∠DCF;
(2)聯(lián)結(jié)HO,試證明HO平分∠CHG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn),與軸、軸分別交于C、D兩點(diǎn).已知: ,點(diǎn)B的坐標(biāo)為.
(1)求該反比例函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)點(diǎn)M在射線(xiàn)CA上,且MA=2AC,求△MOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,有下列條件:①ABCD;②ADBC;③AC=BD;④AC⊥BD.
(1)從中任選一個(gè)作為已知條件,能判定四邊形ABCD是平行四邊形的概率是 .
(2)從中任選兩個(gè)作為已知條件,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法表示能判定四邊形ABCD是矩形的概率,并判斷四邊形ABCD是菱形的概率?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD,CEFG按如圖放置,點(diǎn)B,C,E在同一條直線(xiàn)上,點(diǎn)P在BC邊上,PA=PF,且∠APF=90°,連接AF交CD于點(diǎn)M,有下列結(jié)論:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正確的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com