【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)

【答案】DAC=20°;∠BOA=125°.

【解析】

因為AD是高,所以∠ADC=90°,又因為∠C=70°,所以∠DAC度數(shù)可求;因為∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分線,則∠ABO=30°,故∠BOA的度數(shù)可求.

ADBC
∴∠ADC=90°
∵∠C=70°
∴∠DAC=180°-90°-70°=20°;
∵∠BAC=50°,∠C=70°
∴∠BAO=25°,∠ABC=60°
BF是∠ABC的角平分線
∴∠ABO=30°
∴∠BOA=180°-BAO-ABO=180°-25°-30°=125°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=(m+1)x2﹣2(m+1)x﹣m+3.

(1)求該二次函數(shù)的對稱軸;

(2)過動點C(0,n)作直線l⊥y軸,當直線l與拋物線只有一個公共點時,求n關(guān)于m的函數(shù)表達式;

(3)若對于每一個給定的x值,它所對應的函數(shù)值都不大于6,求整數(shù)m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點A、C的坐標;

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,AD垂直于BD,△BCD的面積為45,△ADC的面積為20,則△ABD的面積為( ).

A.20B.18C.16D.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=C=90°,EBC的中點,DE平分∠ADC

(1)求證:AE平分BAD

(2)求證:ADABCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必須添加一個條件,則下列所添條件不恰當?shù)氖?( ).

A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

(1)如圖:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°,EF分別是BCCD上的點且∠EAF=60°.探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.小王同學探究此問題的方法是,延長FD到點G.使DG=BE連結(jié)AG,先證明ABE≌△ADG.再證明________,可得出結(jié)論,他的結(jié)論應是____.請你按照小王同學的思路寫出完整的證明過程.

實際應用

(2)如圖,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°B處,且兩艦艇到指揮中心的距離相等接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處.且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離是 海里(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后可獲毛利潤共2.1萬元.

(毛利潤=(售價﹣進價)×銷售量)

(1)該商場計劃購進甲、乙兩種手機各多少部?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

同步練習冊答案