如圖是我省某地一座拋物線(xiàn)形拱橋,橋拱在豎直平面內(nèi),與水平橋面相交于A,B兩點(diǎn),橋拱最高點(diǎn)C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點(diǎn),且DE∥AB,點(diǎn)E到直線(xiàn)AB的距離為7m,則DE的長(zhǎng)為 m.
48
解析試題分析:如圖,以點(diǎn)C為原點(diǎn)建立平面直角坐標(biāo)系,
依題意,得B(18,-9),
設(shè)拋物線(xiàn)解析式為:,將B點(diǎn)坐標(biāo)代入,得。
∴拋物線(xiàn)解析式為:。
依題意,得D、E點(diǎn)縱坐標(biāo)為y=-16,代入,得
,解得:x=±24。
∴D點(diǎn)橫坐標(biāo)為-24,E點(diǎn)橫坐標(biāo)為24!郉E的長(zhǎng)為48m。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點(diǎn),直線(xiàn)L與拋物線(xiàn)交于A、C兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線(xiàn)的解析式及直線(xiàn)AC的解析式;
(2)若點(diǎn)D是線(xiàn)段AC下方拋物線(xiàn)上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
(3)點(diǎn)G是拋物線(xiàn)上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使A、C、F、G這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿(mǎn)足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(xiàn)與直線(xiàn)交于點(diǎn)O(0,0),A(,12),點(diǎn)B是拋物線(xiàn)上O,A之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B分別作軸、軸的平行線(xiàn)與直線(xiàn)OA交于點(diǎn)C,E.
(1)求拋物線(xiàn)的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
(3)以BC,BE為邊構(gòu)造矩形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(,),求出,之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(,0),連結(jié)OA,將線(xiàn)段OA繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°,得到線(xiàn)段OB.
(1)請(qǐng)直接寫(xiě)出點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)A、O、B三點(diǎn)的拋物線(xiàn)的解析式;
(3)如果點(diǎn)P是(2)中的拋物線(xiàn)上的動(dòng)點(diǎn),且在x軸的上方,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線(xiàn)l經(jīng)過(guò)點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).
(1)求拋物線(xiàn)l的解析式(用含m的式子表示);
(2)把△OAD沿直線(xiàn)OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長(zhǎng)與線(xiàn)段BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,若拋物線(xiàn)l與線(xiàn)段CE相交,求實(shí)數(shù)m的取值范圍;
(3)在滿(mǎn)足(2)的條件下,求出拋物線(xiàn)l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知拋物線(xiàn)C經(jīng)過(guò)原點(diǎn),對(duì)稱(chēng)軸與拋物線(xiàn)相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且。
(1)求拋物線(xiàn)C的解析式;
(2)將拋物線(xiàn)C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線(xiàn),拋物線(xiàn)與x軸的另一交點(diǎn)為A,B為拋物線(xiàn)上橫坐標(biāo)為2的點(diǎn)。
①若P為線(xiàn)段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過(guò)線(xiàn)段OA上的兩點(diǎn)E、F分別作x軸的垂線(xiàn),交折線(xiàn)O-B-A于E1、F1,再分別以線(xiàn)段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線(xiàn)上時(shí),求時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)與x軸交于點(diǎn)A(1,0),B(3,0),且過(guò)點(diǎn)C(0,﹣3).
(1)求拋物線(xiàn)的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫(xiě)出一種平移的方法,使平移后拋物線(xiàn)的頂點(diǎn)落在直線(xiàn)y=﹣x上,并寫(xiě)出平移后拋物線(xiàn)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC中,邊BC的長(zhǎng)與BC邊上的高的和為20.
(1)寫(xiě)出△ABC的面積y與BC的長(zhǎng)x之間的函數(shù)關(guān)系式,并求出面積為48時(shí)BC的長(zhǎng);
(2)當(dāng)BC多長(zhǎng)時(shí),△ABC的面積最大?最大面積是多少?
(3)當(dāng)△ABC面積最大時(shí),是否存在其周長(zhǎng)最小的情形?如果存在,請(qǐng)說(shuō)出理由,并求出其最小周長(zhǎng);如果不存在,請(qǐng)給予說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知:一元二次方程.
(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線(xiàn)的頂點(diǎn)為C,過(guò)y軸上一點(diǎn)M(0,m)作y軸的垂線(xiàn)l,當(dāng)m為何值時(shí),直線(xiàn)l與△ABC的外接圓有公共點(diǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com