【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(﹣2,0),則下列結論:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正確結論的個數(shù)是( )

A.5
B.4
C.3
D.2

【答案】B
【解析】解:∵拋物線開口向上,

∴a>0,

∵拋物線的對稱軸為直線x=﹣ =1,

∴b=﹣2a<0,

而拋物線與y軸的交點在x軸下方,

∴c<0,

∴bc>0,所以①正確;

∵b=﹣2a,

∴b+2a=0,所以②正確;

∵x=﹣1時,y<0,

∴a﹣b+c<0,即a+c<b,所以③錯誤;

∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(﹣2,0),且對稱軸為直線x=1,

∴二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(4,0),

即x=4時,y=0,

∴16a+4b+c=0,所以④正確;

∵a﹣b+c<0,b=﹣2a,

∴a+2a+c<0,即3a+c<0,所以⑤正確.

所以答案是:B.

【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關系的相關知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+6x軸、y軸分別交于EF.點E坐標為(-8,0),點A的坐標為(-60)

1)求k的值;

2)若點P(xy)是第二象限內(nèi)的直線上的一個動點,當點P運動過程中,試寫出三角形OPA的面積Sx的函數(shù)關系式,并寫出自變量x的取值范圍;

3)探究:當P運動到什么位置時,三角形OPA的面積為9,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是∠BAC平分線,點EAB上,且AE=AC,EFBCAC于點F,ADCE交于點G,與EF交于點H.

(1)證明:AD垂直平分CE;

(2)若∠BCE=40°,求∠EHD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個動點,點F,G,H分別是BC,BE,CE的中點.

(1)求證:△BGF≌△FHC;

(2)設AD=a,當四邊形EGFH是正方形時,求矩形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有兩枚質(zhì)地均勻的正方體骰子,每枚骰子的六個面上都分別標有數(shù)字1、2、3、4、5、6.同時投擲這兩枚骰子,以朝上一面所標的數(shù)字為擲得的結果,那么所得結果之和為9的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵創(chuàng)業(yè),市政府制定了小型企業(yè)的優(yōu)惠政策,許多小型企業(yè)應運而生,某鎮(zhèn)統(tǒng)計了該鎮(zhèn)1﹣5月新注冊小型企業(yè)的數(shù)量,并將結果繪制成如下兩種不完整的統(tǒng)計圖:

(1)某鎮(zhèn)今年1﹣5月新注冊小型企業(yè)一共有家.請將折線統(tǒng)計圖補充完整;
(2)該鎮(zhèn)今年4月新注冊的小型企業(yè)中,只有2家是餐飲企業(yè),現(xiàn)從4月新注冊的小型企業(yè)中隨機抽取2家企業(yè)了解其經(jīng)營狀況,請用列表或畫樹狀圖的方法求出所抽取的2家企業(yè)恰好都是餐飲企業(yè)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,ABC為等邊三角形,AE=CDAD、BE相交于點P

1)求證:AEB≌△CDA

2)求BPQ的度數(shù);

3)若BQADQ,PQ=6,PE=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用反證法證明:兩直線平行,同旁內(nèi)角互補(填空).

已知:如圖,l1l2,l1l2都被l3所截.

求證:∠1+2=180°.

證明:假設∠1+2________180°. l1l2,∴∠1________3. ∵∠1+2 _______180°,∴∠3+2180°,這和________矛盾,∴假設∠1+2__________180°不成立,即∠1+2=180°.

查看答案和解析>>

同步練習冊答案