【題目】如圖,已知a∥b,長方形ABCD的點A在直線a上,B,C,D三點在平面上移動變化(長方形形狀大小始終保持不變),請根據(jù)如下條件解答:
(1)圖1,若點B、D在直線b上,點C在直線b的下方,∠2=30°,則∠1= ;
(2)圖2,若點D在直線a的上方,點C在平行直線a,b內(nèi),點B在直線b的下方,m,n表示角的度數(shù),請寫出m與n的數(shù)量關系并說明理由;
(3)圖3,若點D在平行直線a,b內(nèi),點B,C在直線b的下方,x,y表示角的度數(shù)(x>y),且滿足關系式x2﹣2xy+y2=100,求x的度數(shù).
【答案】(1)60°;(2)90°;(3)50°
【解析】(1)首先根據(jù)角的和差關系計算出∠ADB的度數(shù),再根據(jù)平行線的性質(zhì)可得∠1的度數(shù);(2)過C作EF∥a,根據(jù)a∥b可得EF∥a∥b, 再根據(jù)平行線的性質(zhì)可得∠4+m=∠BCD,n=∠4,利用等量代換可得答案;(3)過D作c∥b,根據(jù)條件可得x-y=10,再根據(jù)平行線的性質(zhì)可得x+y=90,兩個方程組合可得答案.
解:(1)∵四邊形ABCD是長方形,
∴∠ADC=90°,
∵∠2=30°,
∴∠ADB=60°,
∵a∥b,
∴∠1=∠ADB=60°,
故答案為:60°;
(2)如圖2,過C作EF∥a,
∵AB∥CD,
∴n=∠4,
∵a∥b,
∴EF∥a∥b,
∴∠4+m=∠BCD=90°,
∴m+n=90°;
(3)如圖3,過D作c∥b,
∵a∥b,
∴a∥b∥c,
∵x2﹣2xy+y2=100,
∴(x﹣y)2=100,
∵x>y,
∴x﹣y=﹣10(舍去),
∴x﹣y=10,①
∵a∥b,
∴a∥b∥c,
∵∠ADC=90°,
∴x+y=90,②
①+②得:x=50°.
“點睛”此題考查了四邊形綜合,以及平行線的性質(zhì)和判定,關鍵是掌握兩直線平行,內(nèi)錯角相等.
科目:初中數(shù)學 來源: 題型:
【題目】一個平行四邊形繞它的對角線的交點旋轉(zhuǎn)90°,能夠與它本身重合,則該四邊形是( )
A. 矩形 B. 菱形 C. 正方形 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學計劃組織九年級師生去韶山舉行畢業(yè)聯(lián)歡活動.下面是年級組長李老師和小芳、小明同學有關租車問題的對話:
李老師:“平安客運公司有60座和45座兩種型號的客車可供租用,60座客車每輛每天的租金比45座的貴200元.”
小芳:“我們學校八年級師生昨天在這個客運公司租用4輛60座和2輛45座的客車到韶山參觀,一天的租金共計5000元.”
小明:“我們九年級師生租用5輛60座和1輛45座的客車正好坐滿.”
根據(jù)以上對話,解答下列問題:
(1)平安客運公司60座和45座的客車每輛每天的租金分別是多少元?
(2)按小明提出的租車方案,九年級師生到該公司租車一天,共需租金多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有紙片:4張邊長為a的止方形,3張邊長為b的正方形 (a<b),8張寬為a、長為b的長方形,用這15張紙片重新拼出一個長方形,那么該長方形的長為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小東從甲地出發(fā)勻速前往相距20km的乙地,一段時間后,小明從乙地出發(fā)沿同一條路勻速前往甲地.小東出發(fā)2.5h后,在距乙地7.5km處與小明相遇,之后兩人同時到達終點.圖中線段AB、CD分別表示小東、小明與乙地的距離y(km)與小東所用時間x(h)的關系.
(1)求線段AB、CD所表示的y與x之間的函數(shù)表達式;
(2)小東出發(fā)多長時間后,兩人相距16km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,物理實驗室有一單擺在左右擺動,擺動過程中選取了兩個瞬時狀態(tài),從C處測得E、F兩點的俯角分別為∠ACE=α,∠BCF=β,這時點F相對于點E升高了acm.求該擺繩CD的長度.(用含a、α、β的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是_________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com